MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf1 Structured version   Visualization version   GIF version

Theorem nfeqf1 2387
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.)
Assertion
Ref Expression
nfeqf1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem nfeqf1
StepHypRef Expression
1 nfeqf2 2385 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
2 equcom 2017 . . 3 (𝑧 = 𝑦𝑦 = 𝑧)
32nfbii 1850 . 2 (Ⅎ𝑥 𝑧 = 𝑦 ↔ Ⅎ𝑥 𝑦 = 𝑧)
41, 3sylib 218 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by:  dveeq1  2388  sbal2  2537  nfmod2  2561  nfiotad  6530  wl-mo2df  37524  wl-eudf  37526
  Copyright terms: Public domain W3C validator