Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeqf1 | Structured version Visualization version GIF version |
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeqf1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqf2 2377 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
2 | equcom 2021 | . . 3 ⊢ (𝑧 = 𝑦 ↔ 𝑦 = 𝑧) | |
3 | 2 | nfbii 1854 | . 2 ⊢ (Ⅎ𝑥 𝑧 = 𝑦 ↔ Ⅎ𝑥 𝑦 = 𝑧) |
4 | 1, 3 | sylib 217 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: dveeq1 2380 sbal2 2534 nfmod2 2558 nfiotad 6396 wl-mo2df 35725 wl-eudf 35727 |
Copyright terms: Public domain | W3C validator |