 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveeq2 Structured version   Visualization version   GIF version

Theorem dveeq2 2353
 Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) Remove dependency on ax-11 2128. (Revised by Wolf Lammen, 8-Sep-2018.)
Assertion
Ref Expression
dveeq2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq2
StepHypRef Expression
1 nfeqf2 2351 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
21nf5rd 2163 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1523 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-10 2114  ax-12 2143  ax-13 2346 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1766  df-nf 1770 This theorem is referenced by:  axc15  2402  axc15OLD  2403
 Copyright terms: Public domain W3C validator