Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imbi13VD Structured version   Visualization version   GIF version

Theorem imbi13VD 39858
Description: Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 39494 is imbi13VD 39858 without virtual deductions and was automatically derived from imbi13VD 39858.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   (𝜏𝜂)   )
4:2,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
5:1,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))   )
7:6: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂)))))   )
qed:7: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
imbi13VD ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))

Proof of Theorem imbi13VD
StepHypRef Expression
1 idn1 39548 . . . . 5 (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2 idn2 39596 . . . . . 6 (   (𝜑𝜓)   ,   (𝜒𝜃)   ▶   (𝜒𝜃)   )
3 idn3 39598 . . . . . 6 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   (𝜏𝜂)   )
4 imbi12 338 . . . . . 6 ((𝜒𝜃) → ((𝜏𝜂) → ((𝜒𝜏) ↔ (𝜃𝜂))))
52, 3, 4e23 39739 . . . . 5 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
6 imbi12 338 . . . . 5 ((𝜑𝜓) → (((𝜒𝜏) ↔ (𝜃𝜂)) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))))
71, 5, 6e13 39732 . . . 4 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
87in3 39592 . . 3 (   (𝜑𝜓)   ,   (𝜒𝜃)   ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))   )
98in2 39588 . 2 (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))))   )
109in1 39545 1 ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-3an 1110  df-vd1 39544  df-vd2 39552  df-vd3 39564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator