Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imbi13VD Structured version   Visualization version   GIF version

Theorem imbi13VD 43248
Description: Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 42894 is imbi13VD 43248 without virtual deductions and was automatically derived from imbi13VD 43248.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   (𝜏𝜂)   )
4:2,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
5:1,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))   )
7:6: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂)))))   )
qed:7: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
imbi13VD ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))

Proof of Theorem imbi13VD
StepHypRef Expression
1 idn1 42948 . . . . 5 (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2 idn2 42987 . . . . . 6 (   (𝜑𝜓)   ,   (𝜒𝜃)   ▶   (𝜒𝜃)   )
3 idn3 42989 . . . . . 6 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   (𝜏𝜂)   )
4 imbi12 347 . . . . . 6 ((𝜒𝜃) → ((𝜏𝜂) → ((𝜒𝜏) ↔ (𝜃𝜂))))
52, 3, 4e23 43129 . . . . 5 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
6 imbi12 347 . . . . 5 ((𝜑𝜓) → (((𝜒𝜏) ↔ (𝜃𝜂)) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))))
71, 5, 6e13 43122 . . . 4 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
87in3 42983 . . 3 (   (𝜑𝜓)   ,   (𝜒𝜃)   ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))   )
98in2 42979 . 2 (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))))   )
109in1 42945 1 ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-vd1 42944  df-vd2 42952  df-vd3 42964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator