Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imbi13VD Structured version   Visualization version   GIF version

Theorem imbi13VD 44870
Description: Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 44517 is imbi13VD 44870 without virtual deductions and was automatically derived from imbi13VD 44870.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   (𝜏𝜂)   )
4:2,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
5:1,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))   )
7:6: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂)))))   )
qed:7: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
imbi13VD ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))

Proof of Theorem imbi13VD
StepHypRef Expression
1 idn1 44571 . . . . 5 (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2 idn2 44610 . . . . . 6 (   (𝜑𝜓)   ,   (𝜒𝜃)   ▶   (𝜒𝜃)   )
3 idn3 44612 . . . . . 6 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   (𝜏𝜂)   )
4 imbi12 346 . . . . . 6 ((𝜒𝜃) → ((𝜏𝜂) → ((𝜒𝜏) ↔ (𝜃𝜂))))
52, 3, 4e23 44751 . . . . 5 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
6 imbi12 346 . . . . 5 ((𝜑𝜓) → (((𝜒𝜏) ↔ (𝜃𝜂)) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))))
71, 5, 6e13 44744 . . . 4 (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
87in3 44606 . . 3 (   (𝜑𝜓)   ,   (𝜒𝜃)   ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))   )
98in2 44602 . 2 (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))))   )
109in1 44568 1 ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-vd1 44567  df-vd2 44575  df-vd3 44587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator