![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsbc2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of rspsbc2 43750. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
Ref | Expression |
---|---|
rspsbc2VD | ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn2 43829 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ 𝐶 ∈ 𝐷 ) | |
2 | idn1 43790 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | idn3 43831 | . . . . . . 7 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ) | |
4 | rspsbc 3865 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑)) | |
5 | 2, 3, 4 | e13 43964 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ) |
6 | sbcralg 3860 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) | |
7 | 6 | biimpd 228 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) |
8 | 2, 5, 7 | e13 43964 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 ) |
9 | rspsbc 3865 | . . . . 5 ⊢ (𝐶 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) | |
10 | 1, 8, 9 | e23 43971 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ [𝐶 / 𝑦][𝐴 / 𝑥]𝜑 ) |
11 | 10 | in3 43825 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑) ) |
12 | 11 | in2 43821 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) ) |
13 | 12 | in1 43787 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∀wral 3053 [wsbc 3769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-v 3468 df-sbc 3770 df-vd1 43786 df-vd2 43794 df-vd3 43806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |