Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsbc2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of rspsbc2 42154. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
Ref | Expression |
---|---|
rspsbc2VD | ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn2 42233 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ 𝐶 ∈ 𝐷 ) | |
2 | idn1 42194 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | idn3 42235 | . . . . . . 7 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ) | |
4 | rspsbc 3812 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑)) | |
5 | 2, 3, 4 | e13 42368 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ) |
6 | sbcralg 3807 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) | |
7 | 6 | biimpd 228 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) |
8 | 2, 5, 7 | e13 42368 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 ) |
9 | rspsbc 3812 | . . . . 5 ⊢ (𝐶 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) | |
10 | 1, 8, 9 | e23 42375 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ [𝐶 / 𝑦][𝐴 / 𝑥]𝜑 ) |
11 | 10 | in3 42229 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑) ) |
12 | 11 | in2 42225 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) ) |
13 | 12 | in1 42191 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-sbc 3717 df-vd1 42190 df-vd2 42198 df-vd3 42210 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |