| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsbc2VD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of rspsbc2 44559. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
| Ref | Expression |
|---|---|
| rspsbc2VD | ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn2 44638 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ 𝐶 ∈ 𝐷 ) | |
| 2 | idn1 44599 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
| 3 | idn3 44640 | . . . . . . 7 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ) | |
| 4 | rspsbc 3854 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑)) | |
| 5 | 2, 3, 4 | e13 44772 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ) |
| 6 | sbcralg 3849 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) | |
| 7 | 6 | biimpd 229 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) |
| 8 | 2, 5, 7 | e13 44772 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 ) |
| 9 | rspsbc 3854 | . . . . 5 ⊢ (𝐶 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) | |
| 10 | 1, 8, 9 | e23 44779 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ [𝐶 / 𝑦][𝐴 / 𝑥]𝜑 ) |
| 11 | 10 | in3 44634 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑) ) |
| 12 | 11 | in2 44630 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) ) |
| 13 | 12 | in1 44596 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-v 3461 df-sbc 3766 df-vd1 44595 df-vd2 44603 df-vd3 44615 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |