Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tratrb Structured version   Visualization version   GIF version

Theorem tratrb 43283
Description: If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD 43608. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tratrb ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem tratrb
StepHypRef Expression
1 nfv 1918 . . . 4 𝑥Tr 𝐴
2 nfra1 3282 . . . 4 𝑥𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)
3 nfv 1918 . . . 4 𝑥 𝐵𝐴
41, 2, 3nf3an 1905 . . 3 𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)
5 nfv 1918 . . . . 5 𝑦Tr 𝐴
6 nfra2w 3297 . . . . 5 𝑦𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)
7 nfv 1918 . . . . 5 𝑦 𝐵𝐴
85, 6, 7nf3an 1905 . . . 4 𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)
9 simpl 484 . . . . . . . 8 ((𝑥𝑦𝑦𝐵) → 𝑥𝑦)
109a1i 11 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑥𝑦))
11 simpr 486 . . . . . . . 8 ((𝑥𝑦𝑦𝐵) → 𝑦𝐵)
1211a1i 11 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑦𝐵))
13 pm3.2an3 1341 . . . . . . 7 (𝑥𝑦 → (𝑦𝐵 → (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))))
1410, 12, 13syl6c 70 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))))
15 en3lp 9606 . . . . . 6 ¬ (𝑥𝑦𝑦𝐵𝐵𝑥)
16 con3 153 . . . . . 6 ((𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥)) → (¬ (𝑥𝑦𝑦𝐵𝐵𝑥) → ¬ 𝐵𝑥))
1714, 15, 16syl6mpi 67 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → ¬ 𝐵𝑥))
18 eleq2 2823 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
1918biimprcd 249 . . . . . . . 8 (𝑦𝐵 → (𝑥 = 𝐵𝑦𝑥))
2012, 19syl6 35 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝑥 = 𝐵𝑦𝑥)))
21 pm3.2 471 . . . . . . 7 (𝑥𝑦 → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
2210, 20, 21syl10 79 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))))
23 en2lp 9598 . . . . . 6 ¬ (𝑥𝑦𝑦𝑥)
24 con3 153 . . . . . 6 ((𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥)) → (¬ (𝑥𝑦𝑦𝑥) → ¬ 𝑥 = 𝐵))
2522, 23, 24syl6mpi 67 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → ¬ 𝑥 = 𝐵))
26 simp3 1139 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → 𝐵𝐴)
27 simp1 1137 . . . . . . . . 9 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐴)
28 trel 5274 . . . . . . . . . . 11 (Tr 𝐴 → ((𝑦𝐵𝐵𝐴) → 𝑦𝐴))
2928expd 417 . . . . . . . . . 10 (Tr 𝐴 → (𝑦𝐵 → (𝐵𝐴𝑦𝐴)))
3027, 12, 26, 29ee121 43252 . . . . . . . . 9 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑦𝐴))
31 trel 5274 . . . . . . . . . 10 (Tr 𝐴 → ((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
3231expd 417 . . . . . . . . 9 (Tr 𝐴 → (𝑥𝑦 → (𝑦𝐴𝑥𝐴)))
3327, 10, 30, 32ee122 43253 . . . . . . . 8 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑥𝐴))
34 ralcom 3287 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3534biimpi 215 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
36353ad2ant2 1135 . . . . . . . 8 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
37 rspsbc2 43281 . . . . . . . 8 (𝐵𝐴 → (𝑥𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))))
3826, 33, 36, 37ee121 43252 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
39 equid 2016 . . . . . . . 8 𝑥 = 𝑥
40 sbceq1a 3788 . . . . . . . 8 (𝑥 = 𝑥 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
4139, 40ax-mp 5 . . . . . . 7 ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
4238, 41syl6ibr 252 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
43 sbcoreleleq 43282 . . . . . . 7 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
4443biimpd 228 . . . . . 6 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
4526, 42, 44sylsyld 61 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
46 3ornot23 43256 . . . . . 6 ((¬ 𝐵𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵))
4746ex 414 . . . . 5 𝐵𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵)))
4817, 25, 45, 47ee222 43249 . . . 4 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
498, 48alrimi 2207 . . 3 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
504, 49alrimi 2207 . 2 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
51 dftr2 5267 . 2 (Tr 𝐵 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
5250, 51sylibr 233 1 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wral 3062  [wsbc 3777  Tr wtr 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722  ax-reg 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-fr 5631
This theorem is referenced by:  ordelordALT  43284  ordelordALTVD  43614
  Copyright terms: Public domain W3C validator