Proof of Theorem tratrb
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑥Tr 𝐴 |
| 2 | | nfra1 3284 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) |
| 3 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑥 𝐵 ∈ 𝐴 |
| 4 | 1, 2, 3 | nf3an 1901 |
. . 3
⊢
Ⅎ𝑥(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) |
| 5 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦Tr 𝐴 |
| 6 | | nfra2w 3299 |
. . . . 5
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) |
| 7 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦 𝐵 ∈ 𝐴 |
| 8 | 5, 6, 7 | nf3an 1901 |
. . . 4
⊢
Ⅎ𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) |
| 9 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝑦) |
| 10 | 9 | a1i 11 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝑦)) |
| 11 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵)) |
| 13 | | pm3.2an3 1341 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝐵 → (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)))) |
| 14 | 10, 12, 13 | syl6c 70 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)))) |
| 15 | | en3lp 9654 |
. . . . . 6
⊢ ¬
(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) |
| 16 | | con3 153 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)) → (¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) → ¬ 𝐵 ∈ 𝑥)) |
| 17 | 14, 15, 16 | syl6mpi 67 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐵 ∈ 𝑥)) |
| 18 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) |
| 19 | 18 | biimprcd 250 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (𝑥 = 𝐵 → 𝑦 ∈ 𝑥)) |
| 20 | 12, 19 | syl6 35 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐵 → 𝑦 ∈ 𝑥))) |
| 21 | | pm3.2 469 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))) |
| 22 | 10, 20, 21 | syl10 79 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)))) |
| 23 | | en2lp 9646 |
. . . . . 6
⊢ ¬
(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) |
| 24 | | con3 153 |
. . . . . 6
⊢ ((𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) → (¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 = 𝐵)) |
| 25 | 22, 23, 24 | syl6mpi 67 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑥 = 𝐵)) |
| 26 | | simp3 1139 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| 27 | | simp1 1137 |
. . . . . . . . 9
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐴) |
| 28 | | trel 5268 |
. . . . . . . . . . 11
⊢ (Tr 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 29 | 28 | expd 415 |
. . . . . . . . . 10
⊢ (Tr 𝐴 → (𝑦 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
| 30 | 27, 12, 26, 29 | ee121 44525 |
. . . . . . . . 9
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴)) |
| 31 | | trel 5268 |
. . . . . . . . . 10
⊢ (Tr 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 32 | 31 | expd 415 |
. . . . . . . . 9
⊢ (Tr 𝐴 → (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴))) |
| 33 | 27, 10, 30, 32 | ee122 44526 |
. . . . . . . 8
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐴)) |
| 34 | | ralcom 3289 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 35 | 34 | biimpi 216 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 36 | 35 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 37 | | rspsbc2 44554 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)))) |
| 38 | 26, 33, 36, 37 | ee121 44525 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
| 39 | | equid 2011 |
. . . . . . . 8
⊢ 𝑥 = 𝑥 |
| 40 | | sbceq1a 3799 |
. . . . . . . 8
⊢ (𝑥 = 𝑥 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . 7
⊢
([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 42 | 38, 41 | imbitrrdi 252 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
| 43 | | sbcoreleleq 44555 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐴 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
| 44 | 43 | biimpd 229 |
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
| 45 | 26, 42, 44 | sylsyld 61 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
| 46 | | 3ornot23 44529 |
. . . . . 6
⊢ ((¬
𝐵 ∈ 𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝐵)) |
| 47 | 46 | ex 412 |
. . . . 5
⊢ (¬
𝐵 ∈ 𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝐵))) |
| 48 | 17, 25, 45, 47 | ee222 44522 |
. . . 4
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 49 | 8, 48 | alrimi 2213 |
. . 3
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 50 | 4, 49 | alrimi 2213 |
. 2
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 51 | | dftr2 5261 |
. 2
⊢ (Tr 𝐵 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 52 | 50, 51 | sylibr 234 |
1
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) |