Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tratrb Structured version   Visualization version   GIF version

Theorem tratrb 44533
Description: If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD 44857. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tratrb ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem tratrb
StepHypRef Expression
1 nfv 1914 . . . 4 𝑥Tr 𝐴
2 nfra1 3262 . . . 4 𝑥𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)
3 nfv 1914 . . . 4 𝑥 𝐵𝐴
41, 2, 3nf3an 1901 . . 3 𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)
5 nfv 1914 . . . . 5 𝑦Tr 𝐴
6 nfra2w 3276 . . . . 5 𝑦𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)
7 nfv 1914 . . . . 5 𝑦 𝐵𝐴
85, 6, 7nf3an 1901 . . . 4 𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)
9 simpl 482 . . . . . . . 8 ((𝑥𝑦𝑦𝐵) → 𝑥𝑦)
109a1i 11 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑥𝑦))
11 simpr 484 . . . . . . . 8 ((𝑥𝑦𝑦𝐵) → 𝑦𝐵)
1211a1i 11 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑦𝐵))
13 pm3.2an3 1341 . . . . . . 7 (𝑥𝑦 → (𝑦𝐵 → (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))))
1410, 12, 13syl6c 70 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))))
15 en3lp 9574 . . . . . 6 ¬ (𝑥𝑦𝑦𝐵𝐵𝑥)
16 con3 153 . . . . . 6 ((𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥)) → (¬ (𝑥𝑦𝑦𝐵𝐵𝑥) → ¬ 𝐵𝑥))
1714, 15, 16syl6mpi 67 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → ¬ 𝐵𝑥))
18 eleq2 2818 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
1918biimprcd 250 . . . . . . . 8 (𝑦𝐵 → (𝑥 = 𝐵𝑦𝑥))
2012, 19syl6 35 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝑥 = 𝐵𝑦𝑥)))
21 pm3.2 469 . . . . . . 7 (𝑥𝑦 → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
2210, 20, 21syl10 79 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))))
23 en2lp 9566 . . . . . 6 ¬ (𝑥𝑦𝑦𝑥)
24 con3 153 . . . . . 6 ((𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥)) → (¬ (𝑥𝑦𝑦𝑥) → ¬ 𝑥 = 𝐵))
2522, 23, 24syl6mpi 67 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → ¬ 𝑥 = 𝐵))
26 simp3 1138 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → 𝐵𝐴)
27 simp1 1136 . . . . . . . . 9 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐴)
28 trel 5226 . . . . . . . . . . 11 (Tr 𝐴 → ((𝑦𝐵𝐵𝐴) → 𝑦𝐴))
2928expd 415 . . . . . . . . . 10 (Tr 𝐴 → (𝑦𝐵 → (𝐵𝐴𝑦𝐴)))
3027, 12, 26, 29ee121 44502 . . . . . . . . 9 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑦𝐴))
31 trel 5226 . . . . . . . . . 10 (Tr 𝐴 → ((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
3231expd 415 . . . . . . . . 9 (Tr 𝐴 → (𝑥𝑦 → (𝑦𝐴𝑥𝐴)))
3327, 10, 30, 32ee122 44503 . . . . . . . 8 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑥𝐴))
34 ralcom 3266 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3534biimpi 216 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
36353ad2ant2 1134 . . . . . . . 8 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
37 rspsbc2 44531 . . . . . . . 8 (𝐵𝐴 → (𝑥𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))))
3826, 33, 36, 37ee121 44502 . . . . . . 7 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
39 equid 2012 . . . . . . . 8 𝑥 = 𝑥
40 sbceq1a 3767 . . . . . . . 8 (𝑥 = 𝑥 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
4139, 40ax-mp 5 . . . . . . 7 ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
4238, 41imbitrrdi 252 . . . . . 6 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
43 sbcoreleleq 44532 . . . . . . 7 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
4443biimpd 229 . . . . . 6 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
4526, 42, 44sylsyld 61 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
46 3ornot23 44506 . . . . . 6 ((¬ 𝐵𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵))
4746ex 412 . . . . 5 𝐵𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵)))
4817, 25, 45, 47ee222 44499 . . . 4 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
498, 48alrimi 2214 . . 3 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
504, 49alrimi 2214 . 2 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
51 dftr2 5219 . 2 (Tr 𝐵 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
5250, 51sylibr 234 1 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3045  [wsbc 3756  Tr wtr 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-fr 5594
This theorem is referenced by:  ordelordALT  44534  ordelordALTVD  44863
  Copyright terms: Public domain W3C validator