Proof of Theorem tratrb
Step | Hyp | Ref
| Expression |
1 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑥Tr 𝐴 |
2 | | nfra1 3144 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) |
3 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑥 𝐵 ∈ 𝐴 |
4 | 1, 2, 3 | nf3an 1907 |
. . 3
⊢
Ⅎ𝑥(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) |
5 | | nfv 1920 |
. . . . 5
⊢
Ⅎ𝑦Tr 𝐴 |
6 | | nfra2w 3153 |
. . . . 5
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) |
7 | | nfv 1920 |
. . . . 5
⊢
Ⅎ𝑦 𝐵 ∈ 𝐴 |
8 | 5, 6, 7 | nf3an 1907 |
. . . 4
⊢
Ⅎ𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) |
9 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝑦) |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝑦)) |
11 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
12 | 11 | a1i 11 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵)) |
13 | | pm3.2an3 1338 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝐵 → (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)))) |
14 | 10, 12, 13 | syl6c 70 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)))) |
15 | | en3lp 9333 |
. . . . . 6
⊢ ¬
(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) |
16 | | con3 153 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)) → (¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) → ¬ 𝐵 ∈ 𝑥)) |
17 | 14, 15, 16 | syl6mpi 67 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐵 ∈ 𝑥)) |
18 | | eleq2 2828 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) |
19 | 18 | biimprcd 249 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (𝑥 = 𝐵 → 𝑦 ∈ 𝑥)) |
20 | 12, 19 | syl6 35 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐵 → 𝑦 ∈ 𝑥))) |
21 | | pm3.2 469 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))) |
22 | 10, 20, 21 | syl10 79 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)))) |
23 | | en2lp 9325 |
. . . . . 6
⊢ ¬
(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) |
24 | | con3 153 |
. . . . . 6
⊢ ((𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) → (¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 = 𝐵)) |
25 | 22, 23, 24 | syl6mpi 67 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑥 = 𝐵)) |
26 | | simp3 1136 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
27 | | simp1 1134 |
. . . . . . . . 9
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐴) |
28 | | trel 5202 |
. . . . . . . . . . 11
⊢ (Tr 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
29 | 28 | expd 415 |
. . . . . . . . . 10
⊢ (Tr 𝐴 → (𝑦 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
30 | 27, 12, 26, 29 | ee121 42078 |
. . . . . . . . 9
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴)) |
31 | | trel 5202 |
. . . . . . . . . 10
⊢ (Tr 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
32 | 31 | expd 415 |
. . . . . . . . 9
⊢ (Tr 𝐴 → (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴))) |
33 | 27, 10, 30, 32 | ee122 42079 |
. . . . . . . 8
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐴)) |
34 | | ralcom 3282 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
35 | 34 | biimpi 215 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
36 | 35 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
37 | | rspsbc2 42107 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)))) |
38 | 26, 33, 36, 37 | ee121 42078 |
. . . . . . 7
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
39 | | equid 2018 |
. . . . . . . 8
⊢ 𝑥 = 𝑥 |
40 | | sbceq1a 3730 |
. . . . . . . 8
⊢ (𝑥 = 𝑥 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
41 | 39, 40 | ax-mp 5 |
. . . . . . 7
⊢
([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
42 | 38, 41 | syl6ibr 251 |
. . . . . 6
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
43 | | sbcoreleleq 42108 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐴 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
44 | 43 | biimpd 228 |
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
45 | 26, 42, 44 | sylsyld 61 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
46 | | 3ornot23 42082 |
. . . . . 6
⊢ ((¬
𝐵 ∈ 𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝐵)) |
47 | 46 | ex 412 |
. . . . 5
⊢ (¬
𝐵 ∈ 𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝐵))) |
48 | 17, 25, 45, 47 | ee222 42075 |
. . . 4
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
49 | 8, 48 | alrimi 2209 |
. . 3
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
50 | 4, 49 | alrimi 2209 |
. 2
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
51 | | dftr2 5197 |
. 2
⊢ (Tr 𝐵 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
52 | 50, 51 | sylibr 233 |
1
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) |