Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT2 Structured version   Visualization version   GIF version

Theorem suctrALT2 42786
Description: Virtual deduction proof of suctr 6387. The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD 42785 using the tools command file translate_without_overwriting_minimize_excluding_duplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT2 (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALT2
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 6381 . . . . 5 𝐴 ⊆ suc 𝐴
2 trel 5218 . . . . . . 7 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
32expd 416 . . . . . 6 (Tr 𝐴 → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
43adantrd 492 . . . . 5 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑧𝐴)))
5 ssel 3925 . . . . 5 (𝐴 ⊆ suc 𝐴 → (𝑧𝐴𝑧 ∈ suc 𝐴))
61, 4, 5ee03 42690 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑧 ∈ suc 𝐴)))
7 simpl 483 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
87a1i 11 . . . . . 6 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦))
9 eleq2 2825 . . . . . . 7 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
109biimpcd 248 . . . . . 6 (𝑧𝑦 → (𝑦 = 𝐴𝑧𝐴))
118, 10syl6 35 . . . . 5 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧𝐴)))
121, 11, 5ee03 42690 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴)))
13 simpr 485 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
1413a1i 11 . . . . 5 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴))
15 elsuci 6368 . . . . 5 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
1614, 15syl6 35 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑦 = 𝐴)))
17 jao 958 . . . 4 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
186, 12, 16, 17ee222 42451 . . 3 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
1918alrimivv 1930 . 2 (Tr 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
20 dftr2 5211 . 2 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2119, 20sylibr 233 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  wal 1538   = wceq 1540  wcel 2105  wss 3898  Tr wtr 5209  suc csuc 6304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-un 3903  df-in 3905  df-ss 3915  df-sn 4574  df-uni 4853  df-tr 5210  df-suc 6308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator