| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el3v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V, 𝑦 ∈ V and 𝑧 ∈ V (which is true, see vex 3459), then it is true. Inference forms (with ⊢ 𝐴 ∈ V, ⊢ 𝐵 ∈ V and ⊢ 𝐶 ∈ V hypotheses) of the general theorems (proving ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el3v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el3v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3459 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3459 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | vex 3459 | . 2 ⊢ 𝑧 ∈ V | |
| 4 | el3v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 |
| This theorem is referenced by: dfxrn2 38361 usgrgrtrirex 47904 |
| Copyright terms: Public domain | W3C validator |