![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el3v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V, 𝑦 ∈ V and 𝑧 ∈ V (which is true, see vex 3492), then it is true. Inference forms (with ⊢ 𝐴 ∈ V, ⊢ 𝐵 ∈ V and ⊢ 𝐶 ∈ V hypotheses) of the general theorems (proving ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el3v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el3v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3492 | . 2 ⊢ 𝑦 ∈ V | |
3 | vex 3492 | . 2 ⊢ 𝑧 ∈ V | |
4 | el3v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) | |
5 | 1, 2, 3, 4 | mp3an 1461 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: dfxrn2 38332 usgrgrtrirex 47799 |
Copyright terms: Public domain | W3C validator |