MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el3v Structured version   Visualization version   GIF version

Theorem el3v 3472
Description: If a proposition is implied by 𝑥 ∈ V, 𝑦 ∈ V and 𝑧 ∈ V (which is true, see vex 3468), then it is true. Inference forms (with 𝐴 ∈ V, 𝐵 ∈ V and 𝐶 ∈ V hypotheses) of the general theorems (proving ((𝐴𝑉𝐵𝑊𝐶𝑋) → assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
el3v.1 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑)
Assertion
Ref Expression
el3v 𝜑

Proof of Theorem el3v
StepHypRef Expression
1 vex 3468 . 2 𝑥 ∈ V
2 vex 3468 . 2 𝑦 ∈ V
3 vex 3468 . 2 𝑧 ∈ V
4 el3v.1 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑)
51, 2, 3, 4mp3an 1462 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2107  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466
This theorem is referenced by:  dfxrn2  38318  usgrgrtrirex  47863
  Copyright terms: Public domain W3C validator