| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > el2v1 | Structured version Visualization version GIF version | ||
| Description: New way (elv 3469, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v1.1 | ⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| el2v1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | el2v1.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: el3v12 38249 el3v13 38250 exan3 38317 exanres3 38319 ecin0 38375 disjsuc2 38414 eldm1cossres2 38484 brcosscnv 38495 eqvrelqsel 38639 |
| Copyright terms: Public domain | W3C validator |