![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > el2v1 | Structured version Visualization version GIF version |
Description: New way (elv 3493, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
el2v1.1 | ⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
el2v1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | el2v1.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: el3v12 38180 el3v13 38181 exan3 38250 exanres3 38252 ecin0 38308 disjsuc2 38347 eldm1cossres2 38417 brcosscnv 38428 eqvrelqsel 38572 |
Copyright terms: Public domain | W3C validator |