Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el2v1 Structured version   Visualization version   GIF version

Theorem el2v1 38218
Description: New way (elv 3455, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 23-Oct-2018.)
Hypothesis
Ref Expression
el2v1.1 ((𝑥 ∈ V ∧ 𝜑) → 𝜓)
Assertion
Ref Expression
el2v1 (𝜑𝜓)

Proof of Theorem el2v1
StepHypRef Expression
1 vex 3454 . 2 𝑥 ∈ V
2 el2v1.1 . 2 ((𝑥 ∈ V ∧ 𝜑) → 𝜓)
31, 2mpan 690 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452
This theorem is referenced by:  el3v12  38221  el3v13  38222  exan3  38289  exanres3  38291  ecin0  38341  disjsuc2  38384  eldm1cossres2  38459  brcosscnv  38470  eqvrelqsel  38614
  Copyright terms: Public domain W3C validator