![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > el2v1 | Structured version Visualization version GIF version |
Description: New way (elv 3402, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
el2v1.1 | ⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
el2v1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3401 | . 2 ⊢ 𝑥 ∈ V | |
2 | el2v1.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | mpan 680 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 Vcvv 3398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-tru 1605 df-ex 1824 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-v 3400 |
This theorem is referenced by: el3v12 34642 el3v13 34643 exan3 34702 exanres3 34704 ecin0 34754 eldm1cossres2 34848 brcosscnv 34859 eqvrelqsel 35000 |
Copyright terms: Public domain | W3C validator |