Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el3v1 Structured version   Visualization version   GIF version

Theorem el3v1 34333
 Description: New way (elv 34328, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 16-Oct-2020.)
Hypothesis
Ref Expression
el3v1.1 ((𝑥 ∈ V ∧ 𝜓𝜒) → 𝜃)
Assertion
Ref Expression
el3v1 ((𝜓𝜒) → 𝜃)

Proof of Theorem el3v1
StepHypRef Expression
1 vex 3354 . 2 𝑥 ∈ V
2 el3v1.1 . 2 ((𝑥 ∈ V ∧ 𝜓𝜒) → 𝜃)
31, 2mp3an1 1559 1 ((𝜓𝜒) → 𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   ∈ wcel 2145  Vcvv 3351 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-12 2203  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073  df-tru 1634  df-ex 1853  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-v 3353 This theorem is referenced by:  el3v12  34336  br1cossxrnres  34540
 Copyright terms: Public domain W3C validator