Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > el3v1 | Structured version Visualization version GIF version |
Description: New way (elv 3447, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 16-Oct-2020.) |
Ref | Expression |
---|---|
el3v1.1 | ⊢ ((𝑥 ∈ V ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
el3v1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . 2 ⊢ 𝑥 ∈ V | |
2 | el3v1.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | mp3an1 1447 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 |
This theorem is referenced by: el3v12 36452 br1cossxrnres 36682 |
Copyright terms: Public domain | W3C validator |