Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxrn2 Structured version   Visualization version   GIF version

Theorem dfxrn2 38365
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.)
Assertion
Ref Expression
dfxrn2 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem dfxrn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xrnrel 38362 . . 3 Rel (𝑅𝑆)
2 dfrel4v 6166 . . 3 (Rel (𝑅𝑆) ↔ (𝑅𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧})
31, 2mpbi 230 . 2 (𝑅𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧}
4 breq2 5114 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑢(𝑅𝑆)𝑧𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩))
5 brxrn2 38364 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑧 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
65elv 3455 . . . . 5 (𝑢(𝑅𝑆)𝑧 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
7 brxrn 38363 . . . . . . . . 9 ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥𝑢𝑆𝑦)))
87el3v 3458 . . . . . . . 8 (𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥𝑢𝑆𝑦))
98anbi2i 623 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
10 3anass 1094 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
119, 10bitr4i 278 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
12112exbii 1849 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
134copsex2gb 5772 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅𝑆)𝑧))
146, 12, 133bitr2i 299 . . . 4 (𝑢(𝑅𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅𝑆)𝑧))
1514simplbi 497 . . 3 (𝑢(𝑅𝑆)𝑧𝑧 ∈ (V × V))
164, 15cnvoprab 8042 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧}
178oprabbii 7459 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
1817cnveqi 5841 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
193, 16, 183eqtr2i 2759 1 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110  {copab 5172   × cxp 5639  ccnv 5640  Rel wrel 5646  {coprab 7391  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-oprab 7394  df-1st 7971  df-2nd 7972  df-xrn 38360
This theorem is referenced by:  dmxrn  38367
  Copyright terms: Public domain W3C validator