Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxrn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
Ref | Expression |
---|---|
dfxrn2 | ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 36430 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | dfrel4v 6082 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) ↔ (𝑅 ⋉ 𝑆) = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧}) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑅 ⋉ 𝑆) = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
4 | breq2 5074 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) | |
5 | brxrn2 36432 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
6 | 5 | elv 3428 | . . . . 5 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
7 | brxrn 36431 | . . . . . . . . 9 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
8 | 7 | el3v 36298 | . . . . . . . 8 ⊢ (𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
9 | 8 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
10 | 3anass 1093 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 9, 10 | bitr4i 277 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | 2exbii 1852 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 4 | copsex2gb 5705 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
14 | 6, 12, 13 | 3bitr2i 298 | . . . 4 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
15 | 14 | simplbi 497 | . . 3 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 → 𝑧 ∈ (V × V)) |
16 | 4, 15 | cnvoprab 7873 | . 2 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
17 | 8 | oprabbii 7320 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
18 | 17 | cnveqi 5772 | . 2 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
19 | 3, 16, 18 | 3eqtr2i 2772 | 1 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 {copab 5132 × cxp 5578 ◡ccnv 5579 Rel wrel 5585 {coprab 7256 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-oprab 7259 df-1st 7804 df-2nd 7805 df-xrn 36428 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |