Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxrn2 Structured version   Visualization version   GIF version

Theorem dfxrn2 38482
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.)
Assertion
Ref Expression
dfxrn2 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem dfxrn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xrnrel 38479 . . 3 Rel (𝑅𝑆)
2 dfrel4v 6145 . . 3 (Rel (𝑅𝑆) ↔ (𝑅𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧})
31, 2mpbi 230 . 2 (𝑅𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧}
4 breq2 5099 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑢(𝑅𝑆)𝑧𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩))
5 brxrn2 38481 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑧 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
65elv 3442 . . . . 5 (𝑢(𝑅𝑆)𝑧 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
7 brxrn 38480 . . . . . . . . 9 ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥𝑢𝑆𝑦)))
87el3v 3445 . . . . . . . 8 (𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥𝑢𝑆𝑦))
98anbi2i 623 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
10 3anass 1094 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
119, 10bitr4i 278 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
12112exbii 1850 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
134copsex2gb 5752 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅𝑆)𝑧))
146, 12, 133bitr2i 299 . . . 4 (𝑢(𝑅𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅𝑆)𝑧))
1514simplbi 497 . . 3 (𝑢(𝑅𝑆)𝑧𝑧 ∈ (V × V))
164, 15cnvoprab 8001 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧}
178oprabbii 7422 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
1817cnveqi 5820 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
193, 16, 183eqtr2i 2762 1 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437  cop 4583   class class class wbr 5095  {copab 5157   × cxp 5619  ccnv 5620  Rel wrel 5626  {coprab 7356  cxrn 38287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-oprab 7359  df-1st 7930  df-2nd 7931  df-xrn 38477
This theorem is referenced by:  dmxrn  38484
  Copyright terms: Public domain W3C validator