| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxrn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| dfxrn2 | ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38479 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | dfrel4v 6145 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) ↔ (𝑅 ⋉ 𝑆) = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧}) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝑅 ⋉ 𝑆) = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
| 4 | breq2 5099 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) | |
| 5 | brxrn2 38481 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 6 | 5 | elv 3442 | . . . . 5 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 7 | brxrn 38480 | . . . . . . . . 9 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 8 | 7 | el3v 3445 | . . . . . . . 8 ⊢ (𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 9 | 8 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 10 | 3anass 1094 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 11 | 9, 10 | bitr4i 278 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 12 | 11 | 2exbii 1850 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 13 | 4 | copsex2gb 5752 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
| 14 | 6, 12, 13 | 3bitr2i 299 | . . . 4 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
| 15 | 14 | simplbi 497 | . . 3 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 → 𝑧 ∈ (V × V)) |
| 16 | 4, 15 | cnvoprab 8001 | . 2 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
| 17 | 8 | oprabbii 7422 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| 18 | 17 | cnveqi 5820 | . 2 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| 19 | 3, 16, 18 | 3eqtr2i 2762 | 1 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 〈cop 4583 class class class wbr 5095 {copab 5157 × cxp 5619 ◡ccnv 5620 Rel wrel 5626 {coprab 7356 ⋉ cxrn 38287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-oprab 7359 df-1st 7930 df-2nd 7931 df-xrn 38477 |
| This theorem is referenced by: dmxrn 38484 |
| Copyright terms: Public domain | W3C validator |