Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxrn2 Structured version   Visualization version   GIF version

Theorem dfxrn2 37852
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.)
Assertion
Ref Expression
dfxrn2 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem dfxrn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xrnrel 37849 . . 3 Rel (𝑅𝑆)
2 dfrel4v 6197 . . 3 (Rel (𝑅𝑆) ↔ (𝑅𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧})
31, 2mpbi 229 . 2 (𝑅𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧}
4 breq2 5154 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑢(𝑅𝑆)𝑧𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩))
5 brxrn2 37851 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑧 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
65elv 3477 . . . . 5 (𝑢(𝑅𝑆)𝑧 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
7 brxrn 37850 . . . . . . . . 9 ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥𝑢𝑆𝑦)))
87el3v 37696 . . . . . . . 8 (𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥𝑢𝑆𝑦))
98anbi2i 621 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
10 3anass 1092 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
119, 10bitr4i 277 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
12112exbii 1843 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
134copsex2gb 5810 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅𝑆)𝑧))
146, 12, 133bitr2i 298 . . . 4 (𝑢(𝑅𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅𝑆)𝑧))
1514simplbi 496 . . 3 (𝑢(𝑅𝑆)𝑧𝑧 ∈ (V × V))
164, 15cnvoprab 8068 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅𝑆)𝑧}
178oprabbii 7491 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
1817cnveqi 5879 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
193, 16, 183eqtr2i 2761 1 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  Vcvv 3471  cop 4636   class class class wbr 5150  {copab 5212   × cxp 5678  ccnv 5679  Rel wrel 5685  {coprab 7425  cxrn 37652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fo 6557  df-fv 6559  df-oprab 7428  df-1st 7997  df-2nd 7998  df-xrn 37847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator