![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxrn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
Ref | Expression |
---|---|
dfxrn2 | ⊢ (𝑅 ⋉ 𝑆) = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 37849 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | dfrel4v 6197 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) ↔ (𝑅 ⋉ 𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧}) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑅 ⋉ 𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
4 | breq2 5154 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) | |
5 | brxrn2 37851 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
6 | 5 | elv 3477 | . . . . 5 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
7 | brxrn 37850 | . . . . . . . . 9 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
8 | 7 | el3v 37696 | . . . . . . . 8 ⊢ (𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
9 | 8 | anbi2i 621 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
10 | 3anass 1092 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 9, 10 | bitr4i 277 | . . . . . 6 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | 2exbii 1843 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 4 | copsex2gb 5810 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
14 | 6, 12, 13 | 3bitr2i 298 | . . . 4 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
15 | 14 | simplbi 496 | . . 3 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 → 𝑧 ∈ (V × V)) |
16 | 4, 15 | cnvoprab 8068 | . 2 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
17 | 8 | oprabbii 7491 | . . 3 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
18 | 17 | cnveqi 5879 | . 2 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
19 | 3, 16, 18 | 3eqtr2i 2761 | 1 ⊢ (𝑅 ⋉ 𝑆) = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3471 ⟨cop 4636 class class class wbr 5150 {copab 5212 × cxp 5678 ◡ccnv 5679 Rel wrel 5685 {coprab 7425 ⋉ cxrn 37652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fo 6557 df-fv 6559 df-oprab 7428 df-1st 7997 df-2nd 7998 df-xrn 37847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |