![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxrn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
Ref | Expression |
---|---|
dfxrn2 | ⊢ (𝑅 ⋉ 𝑆) = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 37231 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | dfrel4v 6186 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) ↔ (𝑅 ⋉ 𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧}) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑅 ⋉ 𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
4 | breq2 5151 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) | |
5 | brxrn2 37233 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
6 | 5 | elv 3480 | . . . . 5 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
7 | brxrn 37232 | . . . . . . . . 9 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
8 | 7 | el3v 37074 | . . . . . . . 8 ⊢ (𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
9 | 8 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
10 | 3anass 1095 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 9, 10 | bitr4i 277 | . . . . . 6 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | 2exbii 1851 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 4 | copsex2gb 5804 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
14 | 6, 12, 13 | 3bitr2i 298 | . . . 4 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
15 | 14 | simplbi 498 | . . 3 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 → 𝑧 ∈ (V × V)) |
16 | 4, 15 | cnvoprab 8042 | . 2 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
17 | 8 | oprabbii 7472 | . . 3 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
18 | 17 | cnveqi 5872 | . 2 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
19 | 3, 16, 18 | 3eqtr2i 2766 | 1 ⊢ (𝑅 ⋉ 𝑆) = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 class class class wbr 5147 {copab 5209 × cxp 5673 ◡ccnv 5674 Rel wrel 5680 {coprab 7406 ⋉ cxrn 37030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-oprab 7409 df-1st 7971 df-2nd 7972 df-xrn 37229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |