![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxrn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
Ref | Expression |
---|---|
dfxrn2 | ⊢ (𝑅 ⋉ 𝑆) = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 37754 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | dfrel4v 6182 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) ↔ (𝑅 ⋉ 𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧}) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑅 ⋉ 𝑆) = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
4 | breq2 5145 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) | |
5 | brxrn2 37756 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
6 | 5 | elv 3474 | . . . . 5 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
7 | brxrn 37755 | . . . . . . . . 9 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
8 | 7 | el3v 37597 | . . . . . . . 8 ⊢ (𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
9 | 8 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
10 | 3anass 1092 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 9, 10 | bitr4i 278 | . . . . . 6 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | 2exbii 1843 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 4 | copsex2gb 5799 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
14 | 6, 12, 13 | 3bitr2i 299 | . . . 4 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
15 | 14 | simplbi 497 | . . 3 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 → 𝑧 ∈ (V × V)) |
16 | 4, 15 | cnvoprab 8042 | . 2 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = {⟨𝑢, 𝑧⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
17 | 8 | oprabbii 7471 | . . 3 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
18 | 17 | cnveqi 5867 | . 2 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ 𝑢(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩} = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
19 | 3, 16, 18 | 3eqtr2i 2760 | 1 ⊢ (𝑅 ⋉ 𝑆) = ◡{⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 class class class wbr 5141 {copab 5203 × cxp 5667 ◡ccnv 5668 Rel wrel 5674 {coprab 7405 ⋉ cxrn 37553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-oprab 7408 df-1st 7971 df-2nd 7972 df-xrn 37752 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |