Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el3v12 Structured version   Visualization version   GIF version

Theorem el3v12 38180
Description: New way (elv 3493, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021.)
Hypothesis
Ref Expression
el3v12.1 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
el3v12 (𝜒𝜃)

Proof of Theorem el3v12
StepHypRef Expression
1 el3v12.1 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝜒) → 𝜃)
21el3v1 38178 . 2 ((𝑦 ∈ V ∧ 𝜒) → 𝜃)
32el2v1 38177 1 (𝜒𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator