MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el3v3 Structured version   Visualization version   GIF version

Theorem el3v3 3464
Description: If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3459) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.)
Hypothesis
Ref Expression
el3v3.1 ((𝜑𝜓𝑧 ∈ V) → 𝜃)
Assertion
Ref Expression
el3v3 ((𝜑𝜓) → 𝜃)

Proof of Theorem el3v3
StepHypRef Expression
1 vex 3459 . 2 𝑧 ∈ V
2 el3v3.1 . 2 ((𝜑𝜓𝑧 ∈ V) → 𝜃)
31, 2mp3an3 1452 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  Vcvv 3455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457
This theorem is referenced by:  el3v13  38212  el3v23  38213  dfgrlic2  47955  dfgrlic3  47957
  Copyright terms: Public domain W3C validator