| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el3v3 | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3451) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.) |
| Ref | Expression |
|---|---|
| el3v3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) |
| Ref | Expression |
|---|---|
| el3v3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑧 ∈ V | |
| 2 | el3v3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) | |
| 3 | 1, 2 | mp3an3 1452 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 |
| This theorem is referenced by: el3v13 38215 el3v23 38216 dfgrlic2 48000 dfgrlic3 48002 |
| Copyright terms: Public domain | W3C validator |