Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > el3v3 | Structured version Visualization version GIF version |
Description: New way (elv 3428, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 16-Oct-2020.) |
Ref | Expression |
---|---|
el3v3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) |
Ref | Expression |
---|---|
el3v3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . 2 ⊢ 𝑧 ∈ V | |
2 | el3v3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) | |
3 | 1, 2 | mp3an3 1448 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: el3v13 36303 el3v23 36304 |
Copyright terms: Public domain | W3C validator |