MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el3v3 Structured version   Visualization version   GIF version

Theorem el3v3 3497
Description: If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3492) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.)
Hypothesis
Ref Expression
el3v3.1 ((𝜑𝜓𝑧 ∈ V) → 𝜃)
Assertion
Ref Expression
el3v3 ((𝜑𝜓) → 𝜃)

Proof of Theorem el3v3
StepHypRef Expression
1 vex 3492 . 2 𝑧 ∈ V
2 el3v3.1 . 2 ((𝜑𝜓𝑧 ∈ V) → 𝜃)
31, 2mp3an3 1450 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  el3v13  38181  el3v23  38182  dfgrlic2  47825  dfgrlic3  47827
  Copyright terms: Public domain W3C validator