| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el3v3 | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3468) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.) |
| Ref | Expression |
|---|---|
| el3v3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) |
| Ref | Expression |
|---|---|
| el3v3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . 2 ⊢ 𝑧 ∈ V | |
| 2 | el3v3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) | |
| 3 | 1, 2 | mp3an3 1451 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 |
| This theorem is referenced by: el3v13 38169 el3v23 38170 dfgrlic2 47914 dfgrlic3 47916 |
| Copyright terms: Public domain | W3C validator |