MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el3v3 Structured version   Visualization version   GIF version

Theorem el3v3 3473
Description: If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3468) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.)
Hypothesis
Ref Expression
el3v3.1 ((𝜑𝜓𝑧 ∈ V) → 𝜃)
Assertion
Ref Expression
el3v3 ((𝜑𝜓) → 𝜃)

Proof of Theorem el3v3
StepHypRef Expression
1 vex 3468 . 2 𝑧 ∈ V
2 el3v3.1 . 2 ((𝜑𝜓𝑧 ∈ V) → 𝜃)
31, 2mp3an3 1451 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466
This theorem is referenced by:  el3v13  38169  el3v23  38170  dfgrlic2  47914  dfgrlic3  47916
  Copyright terms: Public domain W3C validator