![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > el3v3 | Structured version Visualization version GIF version |
Description: New way (elv 3480, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 16-Oct-2020.) |
Ref | Expression |
---|---|
el3v3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) |
Ref | Expression |
---|---|
el3v3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . 2 ⊢ 𝑧 ∈ V | |
2 | el3v3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) | |
3 | 1, 2 | mp3an3 1450 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: el3v13 37086 el3v23 37087 |
Copyright terms: Public domain | W3C validator |