Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1118 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: mp3an13 1449 mp3an23 1450 mp3anl3 1454 opelxp 5564 ov 7295 ovmpoa 7306 ovmpo 7311 oaword1 8194 oneo 8223 oeoalem 8238 oeoelem 8240 nnaword1 8271 nnneo 8294 erov 8410 enrefg 8572 f1imaen 8602 mapxpen 8718 acnlem 9521 djucomen 9650 nnadju 9670 infmap 10049 canthnumlem 10121 tskin 10232 tsksn 10233 tsk0 10236 gruxp 10280 gruina 10291 genpprecl 10474 addsrpr 10548 mulsrpr 10549 supsrlem 10584 mulid1 10690 00id 10866 mul02lem1 10867 ltneg 11191 leneg 11194 suble0 11205 div1 11380 nnaddcl 11710 nnmulcl 11711 nnge1 11715 nnsub 11731 2halves 11915 halfaddsub 11920 addltmul 11923 frnnn0fsuppg 12006 zleltp1 12085 nnaddm1cl 12091 zextlt 12108 eluzp1p1 12323 uzaddcl 12357 znq 12405 xrre 12616 xrre2 12617 fzshftral 13057 fraclt1 13234 expadd 13534 expmul 13537 sqmul 13548 expubnd 13604 bernneq 13653 faclbnd2 13714 faclbnd6 13722 hashgadd 13801 hashun2 13807 hashunsnggt 13818 hashssdif 13836 hashfun 13861 ccatlcan 14140 ccatrcan 14141 pfx2 14369 shftval3 14496 sqrlem1 14663 caubnd2 14778 bpoly2 15472 bpoly3 15473 fsumcube 15475 efexp 15515 efival 15566 cos01gt0 15605 odd2np1 15755 halfleoddlt 15776 omoe 15778 opeo 15779 divalglem5 15811 gcdmultipleOLD 15964 sqgcd 15974 nn0seqcvgd 15979 prmdvdssq 16127 phiprmpw 16181 eulerthlem2 16187 odzcllem 16197 pythagtriplem15 16234 pythagtriplem17 16236 pcelnn 16274 4sqlem3 16354 fullfunc 17248 fthfunc 17249 prfcl 17532 curf1cl 17557 curfcl 17561 hofcl 17588 odinv 18768 lsmelvalix 18846 dprdval 19206 lsp0 19862 lss0v 19869 zndvds0 20331 frlmlbs 20575 lindfres 20601 lmisfree 20620 coe1scl 21024 ntrin 21774 lpsscls 21854 restperf 21897 txuni2 22278 txopn 22315 elqtop2 22414 xkocnv 22527 ptcmp 22771 xblpnfps 23110 xblpnf 23111 bl2in 23115 unirnblps 23134 unirnbl 23135 blpnfctr 23151 dscopn 23288 bcthlem4 24040 minveclem2 24139 minveclem4 24145 icombl 24277 i1fadd 24408 i1fmul 24409 dvn1 24638 dvexp3 24690 plyconst 24915 plyid 24918 sincosq1eq 25217 sinord 25238 cxpp1 25383 cxpsqrtlem 25405 cxpsqrt 25406 angneg 25501 dcubic 25544 issqf 25833 ppiub 25900 bposlem1 25980 bposlem2 25981 bposlem9 25988 axlowdimlem6 26853 axlowdimlem14 26861 axcontlem2 26871 pthdlem2 27669 0ewlk 28011 ipasslem1 28726 ipasslem2 28727 ipasslem11 28735 minvecolem2 28770 minvecolem3 28771 minvecolem4 28775 shsva 29215 h1datomi 29476 lnfnmuli 29939 leopsq 30024 nmopleid 30034 opsqrlem6 30040 pjnmopi 30043 hstle 30125 csmdsymi 30229 atcvatlem 30280 dpfrac1 30702 cshf1o 30770 cycpmconjslem2 30960 rspidlid 31103 elsx 31693 dya2iocnrect 31779 cvmliftphtlem 32807 satfv1 32853 satffunlem1lem2 32893 satffunlem1 32897 wlimeq12 33380 frecseq123 33393 nosupno 33503 nosupfv 33506 noinfno 33518 noinffv 33521 scutval 33589 scutun12 33599 fvray 34026 fvline 34029 tailfb 34149 uncov 35352 tan2h 35363 matunitlindflem1 35367 matunitlindflem2 35368 poimirlem32 35403 mblfinlem4 35411 mbfresfi 35417 mbfposadd 35418 itg2addnc 35425 ftc1anclem5 35448 ftc1anclem8 35451 dvasin 35455 heiborlem7 35569 igenidl 35815 el3v3 35968 atlatmstc 36929 dihglblem2N 38904 2xp3dxp2ge1d 39718 factwoffsmonot 39719 eldioph4b 40160 diophren 40162 rmxp1 40281 rmyp1 40282 rmxm1 40283 rmym1 40284 dig0 45434 i0oii 45652 onetansqsecsq 45772 cotsqcscsq 45773 |
Copyright terms: Public domain | W3C validator |