![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1119 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: mp3an13 1450 mp3an23 1451 mp3anl3 1455 opelxp 5711 ov 7554 ovmpoa 7565 ovmpo 7570 frecseq123 8269 oaword1 8554 oneo 8583 oeoalem 8598 oeoelem 8600 nnaword1 8631 nnneo 8656 erov 8810 enrefg 8982 f1imaen 9014 mapxpen 9145 0sdom1dom 9240 acnlem 10045 djucomen 10174 nnadju 10194 infmap 10573 canthnumlem 10645 tskin 10756 tsksn 10757 tsk0 10760 gruxp 10804 gruina 10815 genpprecl 10998 addsrpr 11072 mulsrpr 11073 supsrlem 11108 mulrid 11216 00id 11393 mul02lem1 11394 ltneg 11718 leneg 11721 suble0 11732 div1 11907 nnaddcl 12239 nnmulcl 12240 nnge1 12244 nnsub 12260 2halves 12444 halfaddsub 12449 addltmul 12452 fcdmnn0fsuppg 12535 zleltp1 12617 nnaddm1cl 12623 zextlt 12640 eluzp1p1 12854 uzaddcl 12892 znq 12940 xrre 13152 xrre2 13153 fzshftral 13593 fraclt1 13771 expadd 14074 expmul 14077 sqmul 14088 expubnd 14146 bernneq 14196 faclbnd2 14255 faclbnd6 14263 hashgadd 14341 hashun2 14347 hashunsnggt 14358 hashssdif 14376 hashfun 14401 ccatlcan 14672 ccatrcan 14673 pfx2 14902 shftval3 15027 01sqrexlem1 15193 caubnd2 15308 bpoly2 16005 bpoly3 16006 fsumcube 16008 efexp 16048 efival 16099 cos01gt0 16138 odd2np1 16288 halfleoddlt 16309 omoe 16311 opeo 16312 divalglem5 16344 sqgcd 16506 nn0seqcvgd 16511 prmdvdssq 16659 phiprmpw 16713 eulerthlem2 16719 odzcllem 16729 pythagtriplem15 16766 pythagtriplem17 16768 pcelnn 16807 4sqlem3 16887 fullfunc 17861 fthfunc 17862 prfcl 18159 curf1cl 18185 curfcl 18189 hofcl 18216 odinv 19470 lsmelvalix 19550 dprdval 19914 lsp0 20764 lss0v 20771 zndvds0 21325 frlmlbs 21571 lindfres 21597 lmisfree 21616 coe1scl 22029 ntrin 22785 lpsscls 22865 restperf 22908 txuni2 23289 txopn 23326 elqtop2 23425 xkocnv 23538 ptcmp 23782 xblpnfps 24121 xblpnf 24122 bl2in 24126 unirnblps 24145 unirnbl 24146 blpnfctr 24162 dscopn 24302 bcthlem4 25075 minveclem2 25174 minveclem4 25180 icombl 25313 i1fadd 25444 i1fmul 25445 dvn1 25676 dvexp3 25730 plyconst 25955 plyid 25958 sincosq1eq 26258 sinord 26279 cxpp1 26424 cxpsqrtlem 26446 cxpsqrt 26447 angneg 26544 dcubic 26587 issqf 26876 ppiub 26943 bposlem1 27023 bposlem2 27024 bposlem9 27031 nosupno 27442 nosupfv 27445 noinfno 27457 noinffv 27460 scutval 27538 scutun12 27548 cuteq0 27570 cuteq1 27571 cofcut1 27645 cofcutr 27649 addscut2 27701 sleadd1 27711 addsuniflem 27723 addsasslem1 27725 addsasslem2 27726 negscut2 27753 mulsproplem12 27822 mulscut2 27828 divs1 27890 precsexlem10 27901 precsexlem11 27902 axlowdimlem6 28472 axlowdimlem14 28480 axcontlem2 28490 pthdlem2 29292 0ewlk 29634 ipasslem1 30351 ipasslem2 30352 ipasslem11 30360 minvecolem2 30395 minvecolem3 30396 minvecolem4 30400 shsva 30840 h1datomi 31101 lnfnmuli 31564 leopsq 31649 nmopleid 31659 opsqrlem6 31665 pjnmopi 31668 hstle 31750 csmdsymi 31854 atcvatlem 31905 dpfrac1 32325 cshf1o 32393 cycpmconjslem2 32584 rspidlid 32761 elsx 33490 dya2iocnrect 33578 cvmliftphtlem 34606 satfv1 34652 satffunlem1lem2 34692 satffunlem1 34696 wlimeq12 35095 fvray 35417 fvline 35420 tailfb 35565 uncov 36772 tan2h 36783 matunitlindflem1 36787 matunitlindflem2 36788 poimirlem32 36823 mblfinlem4 36831 mbfresfi 36837 mbfposadd 36838 itg2addnc 36845 ftc1anclem5 36868 ftc1anclem8 36871 dvasin 36875 heiborlem7 36988 igenidl 37234 el3v3 37392 atlatmstc 38492 dihglblem2N 40468 2xp3dxp2ge1d 41328 factwoffsmonot 41329 eldioph4b 41851 diophren 41853 rmxp1 41973 rmyp1 41974 rmxm1 41975 rmym1 41976 dig0 47379 i0oii 47639 onetansqsecsq 47893 cotsqcscsq 47894 |
Copyright terms: Public domain | W3C validator |