| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3445 opelxp 5650 ov 7490 ovmpoa 7501 ovmpo 7506 frecseq123 8212 oaword1 8467 oneo 8496 oeoalem 8511 oeoelem 8513 nnaword1 8544 nnneo 8570 erov 8738 enrefg 8906 f1imaen 8939 mapxpen 9056 0sdom1dom 9130 acnlem 9939 djucomen 10069 nnadju 10089 infmap 10467 canthnumlem 10539 tskin 10650 tsksn 10651 tsk0 10654 gruxp 10698 gruina 10709 genpprecl 10892 addsrpr 10966 mulsrpr 10967 supsrlem 11002 mulrid 11110 00id 11288 mul02lem1 11289 ltneg 11617 leneg 11620 suble0 11631 div1 11811 nnaddcl 12148 nnmulcl 12149 nnge1 12153 nnsub 12169 2halves 12339 halfaddsub 12354 addltmul 12357 fcdmnn0fsuppg 12441 zleltp1 12523 nnaddm1cl 12530 zextlt 12547 eluzp1p1 12760 uzaddcl 12802 znq 12850 xrre 13068 xrre2 13069 fzshftral 13515 fraclt1 13706 expadd 14011 expmul 14014 sqmul 14026 expubnd 14085 bernneq 14136 faclbnd2 14198 faclbnd6 14206 hashgadd 14284 hashun2 14290 hashunsnggt 14301 hashssdif 14319 hashfun 14344 ccatlcan 14625 ccatrcan 14626 pfx2 14854 shftval3 14983 01sqrexlem1 15149 caubnd2 15265 bpoly2 15964 bpoly3 15965 fsumcube 15967 efexp 16010 efival 16061 cos01gt0 16100 odd2np1 16252 halfleoddlt 16273 omoe 16275 opeo 16276 divalglem5 16308 sqgcd 16473 nn0seqcvgd 16481 prmdvdssq 16629 phiprmpw 16687 eulerthlem2 16693 odzcllem 16704 pythagtriplem15 16741 pythagtriplem17 16743 pcelnn 16782 4sqlem3 16862 fullfunc 17815 fthfunc 17816 prfcl 18109 curf1cl 18134 curfcl 18138 hofcl 18165 odinv 19473 lsmelvalix 19553 dprdval 19917 lsp0 20942 lss0v 20950 zndvds0 21487 frlmlbs 21734 lindfres 21760 lmisfree 21779 coe1scl 22201 ntrin 22976 lpsscls 23056 restperf 23099 txuni2 23480 txopn 23517 elqtop2 23616 xkocnv 23729 ptcmp 23973 xblpnfps 24310 xblpnf 24311 bl2in 24315 unirnblps 24334 unirnbl 24335 blpnfctr 24351 dscopn 24488 bcthlem4 25254 minveclem2 25353 minveclem4 25359 icombl 25492 i1fadd 25623 i1fmul 25624 dvn1 25855 dvexp3 25909 plyconst 26138 plyid 26141 sincosq1eq 26448 sinord 26470 cxpp1 26616 cxpsqrtlem 26638 cxpsqrt 26639 angneg 26740 dcubic 26783 issqf 27073 ppiub 27142 bposlem1 27222 bposlem2 27223 bposlem9 27230 nosupno 27642 nosupfv 27645 noinfno 27657 noinffv 27660 scutval 27741 scutun12 27751 cuteq0 27776 cuteq1 27778 cofcut1 27864 cofcutr 27868 addscut2 27922 sleadd1 27932 addsuniflem 27944 addsasslem1 27946 addsasslem2 27947 negscut2 27982 mulsproplem12 28066 mulscut2 28072 divs1 28143 precsexlem10 28154 precsexlem11 28155 bdayon 28209 n0s0suc 28270 nnzsubs 28309 zmulscld 28321 axlowdimlem6 28925 axlowdimlem14 28933 axcontlem2 28943 pthdlem2 29746 0ewlk 30094 ipasslem1 30811 ipasslem2 30812 ipasslem11 30820 minvecolem2 30855 minvecolem3 30856 minvecolem4 30860 shsva 31300 h1datomi 31561 lnfnmuli 32024 leopsq 32109 nmopleid 32119 opsqrlem6 32125 pjnmopi 32128 hstle 32210 csmdsymi 32314 atcvatlem 32365 dpfrac1 32872 cshf1o 32943 cycpmconjslem2 33124 rspidlid 33340 elsx 34207 dya2iocnrect 34294 r1omhf 35117 cvmliftphtlem 35361 satfv1 35407 satffunlem1lem2 35447 satffunlem1 35451 wlimeq12 35861 fvray 36185 fvline 36188 tailfb 36421 uncov 37640 tan2h 37651 matunitlindflem1 37655 matunitlindflem2 37656 poimirlem32 37691 mblfinlem4 37699 mbfresfi 37705 mbfposadd 37706 itg2addnc 37713 ftc1anclem5 37736 ftc1anclem8 37739 dvasin 37743 heiborlem7 37856 igenidl 38102 atlatmstc 39417 dihglblem2N 41392 eldioph4b 42903 diophren 42905 rmxp1 43024 rmyp1 43025 rmxm1 43026 rmym1 43027 dfgric2 48014 gpgov 48141 dig0 48706 i0oii 49019 iinfconstbas 49166 onetansqsecsq 49861 cotsqcscsq 49862 |
| Copyright terms: Public domain | W3C validator |