Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1120 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mp3an13 1451 mp3an23 1452 mp3anl3 1456 opelxp 5626 ov 7426 ovmpoa 7437 ovmpo 7442 frecseq123 8107 oaword1 8392 oneo 8421 oeoalem 8436 oeoelem 8438 nnaword1 8469 nnneo 8494 erov 8612 enrefg 8781 f1imaen 8811 mapxpen 8939 acnlem 9813 djucomen 9942 nnadju 9962 infmap 10341 canthnumlem 10413 tskin 10524 tsksn 10525 tsk0 10528 gruxp 10572 gruina 10583 genpprecl 10766 addsrpr 10840 mulsrpr 10841 supsrlem 10876 mulid1 10982 00id 11159 mul02lem1 11160 ltneg 11484 leneg 11487 suble0 11498 div1 11673 nnaddcl 12005 nnmulcl 12006 nnge1 12010 nnsub 12026 2halves 12210 halfaddsub 12215 addltmul 12218 frnnn0fsuppg 12301 zleltp1 12380 nnaddm1cl 12386 zextlt 12403 eluzp1p1 12619 uzaddcl 12653 znq 12701 xrre 12912 xrre2 12913 fzshftral 13353 fraclt1 13531 expadd 13834 expmul 13837 sqmul 13848 expubnd 13904 bernneq 13953 faclbnd2 14014 faclbnd6 14022 hashgadd 14101 hashun2 14107 hashunsnggt 14118 hashssdif 14136 hashfun 14161 ccatlcan 14440 ccatrcan 14441 pfx2 14669 shftval3 14796 sqrlem1 14963 caubnd2 15078 bpoly2 15776 bpoly3 15777 fsumcube 15779 efexp 15819 efival 15870 cos01gt0 15909 odd2np1 16059 halfleoddlt 16080 omoe 16082 opeo 16083 divalglem5 16115 gcdmultipleOLD 16269 sqgcd 16279 nn0seqcvgd 16284 prmdvdssq 16432 phiprmpw 16486 eulerthlem2 16492 odzcllem 16502 pythagtriplem15 16539 pythagtriplem17 16541 pcelnn 16580 4sqlem3 16660 fullfunc 17631 fthfunc 17632 prfcl 17929 curf1cl 17955 curfcl 17959 hofcl 17986 odinv 19177 lsmelvalix 19255 dprdval 19615 lsp0 20280 lss0v 20287 zndvds0 20767 frlmlbs 21013 lindfres 21039 lmisfree 21058 coe1scl 21467 ntrin 22221 lpsscls 22301 restperf 22344 txuni2 22725 txopn 22762 elqtop2 22861 xkocnv 22974 ptcmp 23218 xblpnfps 23557 xblpnf 23558 bl2in 23562 unirnblps 23581 unirnbl 23582 blpnfctr 23598 dscopn 23738 bcthlem4 24500 minveclem2 24599 minveclem4 24605 icombl 24737 i1fadd 24868 i1fmul 24869 dvn1 25099 dvexp3 25151 plyconst 25376 plyid 25379 sincosq1eq 25678 sinord 25699 cxpp1 25844 cxpsqrtlem 25866 cxpsqrt 25867 angneg 25962 dcubic 26005 issqf 26294 ppiub 26361 bposlem1 26441 bposlem2 26442 bposlem9 26449 axlowdimlem6 27324 axlowdimlem14 27332 axcontlem2 27342 pthdlem2 28145 0ewlk 28487 ipasslem1 29202 ipasslem2 29203 ipasslem11 29211 minvecolem2 29246 minvecolem3 29247 minvecolem4 29251 shsva 29691 h1datomi 29952 lnfnmuli 30415 leopsq 30500 nmopleid 30510 opsqrlem6 30516 pjnmopi 30519 hstle 30601 csmdsymi 30705 atcvatlem 30756 dpfrac1 31175 cshf1o 31243 cycpmconjslem2 31431 rspidlid 31579 elsx 32171 dya2iocnrect 32257 cvmliftphtlem 33288 satfv1 33334 satffunlem1lem2 33374 satffunlem1 33378 wlimeq12 33822 nosupno 33915 nosupfv 33918 noinfno 33930 noinffv 33933 scutval 34003 scutun12 34013 cofcut1 34099 cofcutr 34101 fvray 34452 fvline 34455 tailfb 34575 uncov 35767 tan2h 35778 matunitlindflem1 35782 matunitlindflem2 35783 poimirlem32 35818 mblfinlem4 35826 mbfresfi 35832 mbfposadd 35833 itg2addnc 35840 ftc1anclem5 35863 ftc1anclem8 35866 dvasin 35870 heiborlem7 35984 igenidl 36230 el3v3 36383 atlatmstc 37340 dihglblem2N 39315 2xp3dxp2ge1d 40169 factwoffsmonot 40170 eldioph4b 40640 diophren 40642 rmxp1 40761 rmyp1 40762 rmxm1 40763 rmym1 40764 dig0 45963 i0oii 46224 onetansqsecsq 46474 cotsqcscsq 46475 |
Copyright terms: Public domain | W3C validator |