![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1120 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: mp3an13 1451 mp3an23 1452 mp3anl3 1456 el3v3 3486 opelxp 5724 ov 7576 ovmpoa 7587 ovmpo 7592 frecseq123 8305 oaword1 8588 oneo 8617 oeoalem 8632 oeoelem 8634 nnaword1 8665 nnneo 8691 erov 8852 enrefg 9022 f1imaen 9055 mapxpen 9181 0sdom1dom 9271 acnlem 10085 djucomen 10215 nnadju 10235 infmap 10613 canthnumlem 10685 tskin 10796 tsksn 10797 tsk0 10800 gruxp 10844 gruina 10855 genpprecl 11038 addsrpr 11112 mulsrpr 11113 supsrlem 11148 mulrid 11256 00id 11433 mul02lem1 11434 ltneg 11760 leneg 11763 suble0 11774 div1 11954 nnaddcl 12286 nnmulcl 12287 nnge1 12291 nnsub 12307 2halves 12491 halfaddsub 12496 addltmul 12499 fcdmnn0fsuppg 12583 zleltp1 12665 nnaddm1cl 12672 zextlt 12689 eluzp1p1 12903 uzaddcl 12943 znq 12991 xrre 13207 xrre2 13208 fzshftral 13651 fraclt1 13838 expadd 14141 expmul 14144 sqmul 14155 expubnd 14213 bernneq 14264 faclbnd2 14326 faclbnd6 14334 hashgadd 14412 hashun2 14418 hashunsnggt 14429 hashssdif 14447 hashfun 14472 ccatlcan 14752 ccatrcan 14753 pfx2 14982 shftval3 15111 01sqrexlem1 15277 caubnd2 15392 bpoly2 16089 bpoly3 16090 fsumcube 16092 efexp 16133 efival 16184 cos01gt0 16223 odd2np1 16374 halfleoddlt 16395 omoe 16397 opeo 16398 divalglem5 16430 sqgcd 16595 nn0seqcvgd 16603 prmdvdssq 16751 phiprmpw 16809 eulerthlem2 16815 odzcllem 16825 pythagtriplem15 16862 pythagtriplem17 16864 pcelnn 16903 4sqlem3 16983 fullfunc 17959 fthfunc 17960 prfcl 18258 curf1cl 18284 curfcl 18288 hofcl 18315 odinv 19593 lsmelvalix 19673 dprdval 20037 lsp0 21024 lss0v 21032 zndvds0 21586 frlmlbs 21834 lindfres 21860 lmisfree 21879 coe1scl 22305 ntrin 23084 lpsscls 23164 restperf 23207 txuni2 23588 txopn 23625 elqtop2 23724 xkocnv 23837 ptcmp 24081 xblpnfps 24420 xblpnf 24421 bl2in 24425 unirnblps 24444 unirnbl 24445 blpnfctr 24461 dscopn 24601 bcthlem4 25374 minveclem2 25473 minveclem4 25479 icombl 25612 i1fadd 25743 i1fmul 25744 dvn1 25976 dvexp3 26030 plyconst 26259 plyid 26262 sincosq1eq 26568 sinord 26590 cxpp1 26736 cxpsqrtlem 26758 cxpsqrt 26759 angneg 26860 dcubic 26903 issqf 27193 ppiub 27262 bposlem1 27342 bposlem2 27343 bposlem9 27350 nosupno 27762 nosupfv 27765 noinfno 27777 noinffv 27780 scutval 27859 scutun12 27869 cuteq0 27891 cuteq1 27892 cofcut1 27968 cofcutr 27972 addscut2 28026 sleadd1 28036 addsuniflem 28048 addsasslem1 28050 addsasslem2 28051 negscut2 28086 mulsproplem12 28167 mulscut2 28173 divs1 28243 precsexlem10 28254 precsexlem11 28255 n0s0suc 28359 nnzsubs 28385 zmulscld 28397 axlowdimlem6 28976 axlowdimlem14 28984 axcontlem2 28994 pthdlem2 29800 0ewlk 30142 ipasslem1 30859 ipasslem2 30860 ipasslem11 30868 minvecolem2 30903 minvecolem3 30904 minvecolem4 30908 shsva 31348 h1datomi 31609 lnfnmuli 32072 leopsq 32157 nmopleid 32167 opsqrlem6 32173 pjnmopi 32176 hstle 32258 csmdsymi 32362 atcvatlem 32413 dpfrac1 32858 cshf1o 32931 cycpmconjslem2 33157 rspidlid 33382 elsx 34174 dya2iocnrect 34262 cvmliftphtlem 35301 satfv1 35347 satffunlem1lem2 35387 satffunlem1 35391 wlimeq12 35800 fvray 36122 fvline 36125 tailfb 36359 uncov 37587 tan2h 37598 matunitlindflem1 37602 matunitlindflem2 37603 poimirlem32 37638 mblfinlem4 37646 mbfresfi 37652 mbfposadd 37653 itg2addnc 37660 ftc1anclem5 37683 ftc1anclem8 37686 dvasin 37690 heiborlem7 37803 igenidl 38049 atlatmstc 39300 dihglblem2N 41276 2xp3dxp2ge1d 42222 factwoffsmonot 42223 eldioph4b 42798 diophren 42800 rmxp1 42920 rmyp1 42921 rmxm1 42922 rmym1 42923 dfgric2 47821 gpgov 47936 dig0 48455 i0oii 48715 onetansqsecsq 48991 cotsqcscsq 48992 |
Copyright terms: Public domain | W3C validator |