| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3445 opelxp 5655 ov 7493 ovmpoa 7504 ovmpo 7509 frecseq123 8215 oaword1 8470 oneo 8499 oeoalem 8514 oeoelem 8516 nnaword1 8547 nnneo 8573 erov 8741 enrefg 8909 f1imaen 8942 mapxpen 9060 0sdom1dom 9135 acnlem 9942 djucomen 10072 nnadju 10092 infmap 10470 canthnumlem 10542 tskin 10653 tsksn 10654 tsk0 10657 gruxp 10701 gruina 10712 genpprecl 10895 addsrpr 10969 mulsrpr 10970 supsrlem 11005 mulrid 11113 00id 11291 mul02lem1 11292 ltneg 11620 leneg 11623 suble0 11634 div1 11814 nnaddcl 12151 nnmulcl 12152 nnge1 12156 nnsub 12172 2halves 12342 halfaddsub 12357 addltmul 12360 fcdmnn0fsuppg 12444 zleltp1 12526 nnaddm1cl 12533 zextlt 12550 eluzp1p1 12763 uzaddcl 12805 znq 12853 xrre 13071 xrre2 13072 fzshftral 13518 fraclt1 13706 expadd 14011 expmul 14014 sqmul 14026 expubnd 14085 bernneq 14136 faclbnd2 14198 faclbnd6 14206 hashgadd 14284 hashun2 14290 hashunsnggt 14301 hashssdif 14319 hashfun 14344 ccatlcan 14624 ccatrcan 14625 pfx2 14854 shftval3 14983 01sqrexlem1 15149 caubnd2 15265 bpoly2 15964 bpoly3 15965 fsumcube 15967 efexp 16010 efival 16061 cos01gt0 16100 odd2np1 16252 halfleoddlt 16273 omoe 16275 opeo 16276 divalglem5 16308 sqgcd 16473 nn0seqcvgd 16481 prmdvdssq 16629 phiprmpw 16687 eulerthlem2 16693 odzcllem 16704 pythagtriplem15 16741 pythagtriplem17 16743 pcelnn 16782 4sqlem3 16862 fullfunc 17815 fthfunc 17816 prfcl 18109 curf1cl 18134 curfcl 18138 hofcl 18165 odinv 19440 lsmelvalix 19520 dprdval 19884 lsp0 20912 lss0v 20920 zndvds0 21457 frlmlbs 21704 lindfres 21730 lmisfree 21749 coe1scl 22171 ntrin 22946 lpsscls 23026 restperf 23069 txuni2 23450 txopn 23487 elqtop2 23586 xkocnv 23699 ptcmp 23943 xblpnfps 24281 xblpnf 24282 bl2in 24286 unirnblps 24305 unirnbl 24306 blpnfctr 24322 dscopn 24459 bcthlem4 25225 minveclem2 25324 minveclem4 25330 icombl 25463 i1fadd 25594 i1fmul 25595 dvn1 25826 dvexp3 25880 plyconst 26109 plyid 26112 sincosq1eq 26419 sinord 26441 cxpp1 26587 cxpsqrtlem 26609 cxpsqrt 26610 angneg 26711 dcubic 26754 issqf 27044 ppiub 27113 bposlem1 27193 bposlem2 27194 bposlem9 27201 nosupno 27613 nosupfv 27616 noinfno 27628 noinffv 27631 scutval 27712 scutun12 27722 cuteq0 27747 cuteq1 27749 cofcut1 27835 cofcutr 27839 addscut2 27893 sleadd1 27903 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 negscut2 27953 mulsproplem12 28037 mulscut2 28043 divs1 28114 precsexlem10 28125 precsexlem11 28126 bdayon 28180 n0s0suc 28241 nnzsubs 28280 zmulscld 28292 axlowdimlem6 28896 axlowdimlem14 28904 axcontlem2 28914 pthdlem2 29717 0ewlk 30062 ipasslem1 30779 ipasslem2 30780 ipasslem11 30788 minvecolem2 30823 minvecolem3 30824 minvecolem4 30828 shsva 31268 h1datomi 31529 lnfnmuli 31992 leopsq 32077 nmopleid 32087 opsqrlem6 32093 pjnmopi 32096 hstle 32178 csmdsymi 32282 atcvatlem 32333 dpfrac1 32841 cshf1o 32913 cycpmconjslem2 33106 rspidlid 33321 elsx 34177 dya2iocnrect 34265 cvmliftphtlem 35310 satfv1 35356 satffunlem1lem2 35396 satffunlem1 35400 wlimeq12 35813 fvray 36135 fvline 36138 tailfb 36371 uncov 37601 tan2h 37612 matunitlindflem1 37616 matunitlindflem2 37617 poimirlem32 37652 mblfinlem4 37660 mbfresfi 37666 mbfposadd 37667 itg2addnc 37674 ftc1anclem5 37697 ftc1anclem8 37700 dvasin 37704 heiborlem7 37817 igenidl 38063 atlatmstc 39318 dihglblem2N 41293 eldioph4b 42804 diophren 42806 rmxp1 42925 rmyp1 42926 rmxm1 42927 rmym1 42928 dfgric2 47919 gpgov 48046 dig0 48611 i0oii 48924 iinfconstbas 49071 onetansqsecsq 49766 cotsqcscsq 49767 |
| Copyright terms: Public domain | W3C validator |