![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1122 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: mp3an13 1453 mp3an23 1454 mp3anl3 1458 opelxp 5712 ov 7549 ovmpoa 7560 ovmpo 7565 frecseq123 8264 oaword1 8549 oneo 8578 oeoalem 8593 oeoelem 8595 nnaword1 8626 nnneo 8651 erov 8805 enrefg 8977 f1imaen 9009 mapxpen 9140 0sdom1dom 9235 acnlem 10040 djucomen 10169 nnadju 10189 infmap 10568 canthnumlem 10640 tskin 10751 tsksn 10752 tsk0 10755 gruxp 10799 gruina 10810 genpprecl 10993 addsrpr 11067 mulsrpr 11068 supsrlem 11103 mulrid 11209 00id 11386 mul02lem1 11387 ltneg 11711 leneg 11714 suble0 11725 div1 11900 nnaddcl 12232 nnmulcl 12233 nnge1 12237 nnsub 12253 2halves 12437 halfaddsub 12442 addltmul 12445 fcdmnn0fsuppg 12528 zleltp1 12610 nnaddm1cl 12616 zextlt 12633 eluzp1p1 12847 uzaddcl 12885 znq 12933 xrre 13145 xrre2 13146 fzshftral 13586 fraclt1 13764 expadd 14067 expmul 14070 sqmul 14081 expubnd 14139 bernneq 14189 faclbnd2 14248 faclbnd6 14256 hashgadd 14334 hashun2 14340 hashunsnggt 14351 hashssdif 14369 hashfun 14394 ccatlcan 14665 ccatrcan 14666 pfx2 14895 shftval3 15020 01sqrexlem1 15186 caubnd2 15301 bpoly2 15998 bpoly3 15999 fsumcube 16001 efexp 16041 efival 16092 cos01gt0 16131 odd2np1 16281 halfleoddlt 16302 omoe 16304 opeo 16305 divalglem5 16337 sqgcd 16499 nn0seqcvgd 16504 prmdvdssq 16652 phiprmpw 16706 eulerthlem2 16712 odzcllem 16722 pythagtriplem15 16759 pythagtriplem17 16761 pcelnn 16800 4sqlem3 16880 fullfunc 17854 fthfunc 17855 prfcl 18152 curf1cl 18178 curfcl 18182 hofcl 18209 odinv 19424 lsmelvalix 19504 dprdval 19868 lsp0 20613 lss0v 20620 zndvds0 21098 frlmlbs 21344 lindfres 21370 lmisfree 21389 coe1scl 21801 ntrin 22557 lpsscls 22637 restperf 22680 txuni2 23061 txopn 23098 elqtop2 23197 xkocnv 23310 ptcmp 23554 xblpnfps 23893 xblpnf 23894 bl2in 23898 unirnblps 23917 unirnbl 23918 blpnfctr 23934 dscopn 24074 bcthlem4 24836 minveclem2 24935 minveclem4 24941 icombl 25073 i1fadd 25204 i1fmul 25205 dvn1 25435 dvexp3 25487 plyconst 25712 plyid 25715 sincosq1eq 26014 sinord 26035 cxpp1 26180 cxpsqrtlem 26202 cxpsqrt 26203 angneg 26298 dcubic 26341 issqf 26630 ppiub 26697 bposlem1 26777 bposlem2 26778 bposlem9 26785 nosupno 27196 nosupfv 27199 noinfno 27211 noinffv 27214 scutval 27291 scutun12 27301 cuteq0 27323 cuteq1 27324 cofcut1 27397 cofcutr 27401 addscut2 27453 sleadd1 27462 addsuniflem 27474 addsasslem1 27476 addsasslem2 27477 negscut2 27504 mulsproplem12 27573 mulscut2 27579 divs1 27641 precsexlem10 27652 precsexlem11 27653 axlowdimlem6 28195 axlowdimlem14 28203 axcontlem2 28213 pthdlem2 29015 0ewlk 29357 ipasslem1 30072 ipasslem2 30073 ipasslem11 30081 minvecolem2 30116 minvecolem3 30117 minvecolem4 30121 shsva 30561 h1datomi 30822 lnfnmuli 31285 leopsq 31370 nmopleid 31380 opsqrlem6 31386 pjnmopi 31389 hstle 31471 csmdsymi 31575 atcvatlem 31626 dpfrac1 32046 cshf1o 32114 cycpmconjslem2 32302 rspidlid 32476 elsx 33181 dya2iocnrect 33269 cvmliftphtlem 34297 satfv1 34343 satffunlem1lem2 34383 satffunlem1 34387 wlimeq12 34780 fvray 35102 fvline 35105 tailfb 35251 uncov 36458 tan2h 36469 matunitlindflem1 36473 matunitlindflem2 36474 poimirlem32 36509 mblfinlem4 36517 mbfresfi 36523 mbfposadd 36524 itg2addnc 36531 ftc1anclem5 36554 ftc1anclem8 36557 dvasin 36561 heiborlem7 36674 igenidl 36920 el3v3 37078 atlatmstc 38178 dihglblem2N 40154 2xp3dxp2ge1d 41011 factwoffsmonot 41012 eldioph4b 41535 diophren 41537 rmxp1 41657 rmyp1 41658 rmxm1 41659 rmym1 41660 dig0 47246 i0oii 47506 onetansqsecsq 47760 cotsqcscsq 47761 |
Copyright terms: Public domain | W3C validator |