| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3468 opelxp 5690 ov 7549 ovmpoa 7560 ovmpo 7565 frecseq123 8279 oaword1 8562 oneo 8591 oeoalem 8606 oeoelem 8608 nnaword1 8639 nnneo 8665 erov 8826 enrefg 8996 f1imaen 9029 mapxpen 9155 0sdom1dom 9244 acnlem 10060 djucomen 10190 nnadju 10210 infmap 10588 canthnumlem 10660 tskin 10771 tsksn 10772 tsk0 10775 gruxp 10819 gruina 10830 genpprecl 11013 addsrpr 11087 mulsrpr 11088 supsrlem 11123 mulrid 11231 00id 11408 mul02lem1 11409 ltneg 11735 leneg 11738 suble0 11749 div1 11929 nnaddcl 12261 nnmulcl 12262 nnge1 12266 nnsub 12282 2halves 12457 halfaddsub 12472 addltmul 12475 fcdmnn0fsuppg 12559 zleltp1 12641 nnaddm1cl 12648 zextlt 12665 eluzp1p1 12878 uzaddcl 12918 znq 12966 xrre 13183 xrre2 13184 fzshftral 13630 fraclt1 13817 expadd 14120 expmul 14123 sqmul 14135 expubnd 14194 bernneq 14245 faclbnd2 14307 faclbnd6 14315 hashgadd 14393 hashun2 14399 hashunsnggt 14410 hashssdif 14428 hashfun 14453 ccatlcan 14734 ccatrcan 14735 pfx2 14964 shftval3 15093 01sqrexlem1 15259 caubnd2 15374 bpoly2 16071 bpoly3 16072 fsumcube 16074 efexp 16117 efival 16168 cos01gt0 16207 odd2np1 16358 halfleoddlt 16379 omoe 16381 opeo 16382 divalglem5 16414 sqgcd 16579 nn0seqcvgd 16587 prmdvdssq 16735 phiprmpw 16793 eulerthlem2 16799 odzcllem 16810 pythagtriplem15 16847 pythagtriplem17 16849 pcelnn 16888 4sqlem3 16968 fullfunc 17919 fthfunc 17920 prfcl 18213 curf1cl 18238 curfcl 18242 hofcl 18269 odinv 19540 lsmelvalix 19620 dprdval 19984 lsp0 20964 lss0v 20972 zndvds0 21509 frlmlbs 21755 lindfres 21781 lmisfree 21800 coe1scl 22222 ntrin 22997 lpsscls 23077 restperf 23120 txuni2 23501 txopn 23538 elqtop2 23637 xkocnv 23750 ptcmp 23994 xblpnfps 24332 xblpnf 24333 bl2in 24337 unirnblps 24356 unirnbl 24357 blpnfctr 24373 dscopn 24510 bcthlem4 25277 minveclem2 25376 minveclem4 25382 icombl 25515 i1fadd 25646 i1fmul 25647 dvn1 25878 dvexp3 25932 plyconst 26161 plyid 26164 sincosq1eq 26471 sinord 26493 cxpp1 26639 cxpsqrtlem 26661 cxpsqrt 26662 angneg 26763 dcubic 26806 issqf 27096 ppiub 27165 bposlem1 27245 bposlem2 27246 bposlem9 27253 nosupno 27665 nosupfv 27668 noinfno 27680 noinffv 27683 scutval 27762 scutun12 27772 cuteq0 27794 cuteq1 27795 cofcut1 27871 cofcutr 27875 addscut2 27929 sleadd1 27939 addsuniflem 27951 addsasslem1 27953 addsasslem2 27954 negscut2 27989 mulsproplem12 28070 mulscut2 28076 divs1 28146 precsexlem10 28157 precsexlem11 28158 n0s0suc 28262 nnzsubs 28288 zmulscld 28300 axlowdimlem6 28872 axlowdimlem14 28880 axcontlem2 28890 pthdlem2 29696 0ewlk 30041 ipasslem1 30758 ipasslem2 30759 ipasslem11 30767 minvecolem2 30802 minvecolem3 30803 minvecolem4 30807 shsva 31247 h1datomi 31508 lnfnmuli 31971 leopsq 32056 nmopleid 32066 opsqrlem6 32072 pjnmopi 32075 hstle 32157 csmdsymi 32261 atcvatlem 32312 dpfrac1 32812 cshf1o 32884 cycpmconjslem2 33112 rspidlid 33336 elsx 34171 dya2iocnrect 34259 cvmliftphtlem 35285 satfv1 35331 satffunlem1lem2 35371 satffunlem1 35375 wlimeq12 35783 fvray 36105 fvline 36108 tailfb 36341 uncov 37571 tan2h 37582 matunitlindflem1 37586 matunitlindflem2 37587 poimirlem32 37622 mblfinlem4 37630 mbfresfi 37636 mbfposadd 37637 itg2addnc 37644 ftc1anclem5 37667 ftc1anclem8 37670 dvasin 37674 heiborlem7 37787 igenidl 38033 atlatmstc 39283 dihglblem2N 41259 2xp3dxp2ge1d 42200 factwoffsmonot 42201 eldioph4b 42781 diophren 42783 rmxp1 42903 rmyp1 42904 rmxm1 42905 rmym1 42906 dfgric2 47876 gpgov 47994 dig0 48534 i0oii 48842 iinfconstbas 48981 onetansqsecsq 49573 cotsqcscsq 49574 |
| Copyright terms: Public domain | W3C validator |