| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3459 opelxp 5677 ov 7536 ovmpoa 7547 ovmpo 7552 frecseq123 8264 oaword1 8519 oneo 8548 oeoalem 8563 oeoelem 8565 nnaword1 8596 nnneo 8622 erov 8790 enrefg 8958 f1imaen 8991 mapxpen 9113 0sdom1dom 9192 acnlem 10008 djucomen 10138 nnadju 10158 infmap 10536 canthnumlem 10608 tskin 10719 tsksn 10720 tsk0 10723 gruxp 10767 gruina 10778 genpprecl 10961 addsrpr 11035 mulsrpr 11036 supsrlem 11071 mulrid 11179 00id 11356 mul02lem1 11357 ltneg 11685 leneg 11688 suble0 11699 div1 11879 nnaddcl 12216 nnmulcl 12217 nnge1 12221 nnsub 12237 2halves 12407 halfaddsub 12422 addltmul 12425 fcdmnn0fsuppg 12509 zleltp1 12591 nnaddm1cl 12598 zextlt 12615 eluzp1p1 12828 uzaddcl 12870 znq 12918 xrre 13136 xrre2 13137 fzshftral 13583 fraclt1 13771 expadd 14076 expmul 14079 sqmul 14091 expubnd 14150 bernneq 14201 faclbnd2 14263 faclbnd6 14271 hashgadd 14349 hashun2 14355 hashunsnggt 14366 hashssdif 14384 hashfun 14409 ccatlcan 14690 ccatrcan 14691 pfx2 14920 shftval3 15049 01sqrexlem1 15215 caubnd2 15331 bpoly2 16030 bpoly3 16031 fsumcube 16033 efexp 16076 efival 16127 cos01gt0 16166 odd2np1 16318 halfleoddlt 16339 omoe 16341 opeo 16342 divalglem5 16374 sqgcd 16539 nn0seqcvgd 16547 prmdvdssq 16695 phiprmpw 16753 eulerthlem2 16759 odzcllem 16770 pythagtriplem15 16807 pythagtriplem17 16809 pcelnn 16848 4sqlem3 16928 fullfunc 17877 fthfunc 17878 prfcl 18171 curf1cl 18196 curfcl 18200 hofcl 18227 odinv 19498 lsmelvalix 19578 dprdval 19942 lsp0 20922 lss0v 20930 zndvds0 21467 frlmlbs 21713 lindfres 21739 lmisfree 21758 coe1scl 22180 ntrin 22955 lpsscls 23035 restperf 23078 txuni2 23459 txopn 23496 elqtop2 23595 xkocnv 23708 ptcmp 23952 xblpnfps 24290 xblpnf 24291 bl2in 24295 unirnblps 24314 unirnbl 24315 blpnfctr 24331 dscopn 24468 bcthlem4 25234 minveclem2 25333 minveclem4 25339 icombl 25472 i1fadd 25603 i1fmul 25604 dvn1 25835 dvexp3 25889 plyconst 26118 plyid 26121 sincosq1eq 26428 sinord 26450 cxpp1 26596 cxpsqrtlem 26618 cxpsqrt 26619 angneg 26720 dcubic 26763 issqf 27053 ppiub 27122 bposlem1 27202 bposlem2 27203 bposlem9 27210 nosupno 27622 nosupfv 27625 noinfno 27637 noinffv 27640 scutval 27719 scutun12 27729 cuteq0 27751 cuteq1 27753 cofcut1 27835 cofcutr 27839 addscut2 27893 sleadd1 27903 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 negscut2 27953 mulsproplem12 28037 mulscut2 28043 divs1 28114 precsexlem10 28125 precsexlem11 28126 bdayon 28180 n0s0suc 28241 nnzsubs 28280 zmulscld 28292 axlowdimlem6 28881 axlowdimlem14 28889 axcontlem2 28899 pthdlem2 29705 0ewlk 30050 ipasslem1 30767 ipasslem2 30768 ipasslem11 30776 minvecolem2 30811 minvecolem3 30812 minvecolem4 30816 shsva 31256 h1datomi 31517 lnfnmuli 31980 leopsq 32065 nmopleid 32075 opsqrlem6 32081 pjnmopi 32084 hstle 32166 csmdsymi 32270 atcvatlem 32321 dpfrac1 32819 cshf1o 32891 cycpmconjslem2 33119 rspidlid 33353 elsx 34191 dya2iocnrect 34279 cvmliftphtlem 35311 satfv1 35357 satffunlem1lem2 35397 satffunlem1 35401 wlimeq12 35814 fvray 36136 fvline 36139 tailfb 36372 uncov 37602 tan2h 37613 matunitlindflem1 37617 matunitlindflem2 37618 poimirlem32 37653 mblfinlem4 37661 mbfresfi 37667 mbfposadd 37668 itg2addnc 37675 ftc1anclem5 37698 ftc1anclem8 37701 dvasin 37705 heiborlem7 37818 igenidl 38064 atlatmstc 39319 dihglblem2N 41295 eldioph4b 42806 diophren 42808 rmxp1 42928 rmyp1 42929 rmxm1 42930 rmym1 42931 dfgric2 47919 gpgov 48037 dig0 48599 i0oii 48912 iinfconstbas 49059 onetansqsecsq 49754 cotsqcscsq 49755 |
| Copyright terms: Public domain | W3C validator |