| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3456 opelxp 5674 ov 7533 ovmpoa 7544 ovmpo 7549 frecseq123 8261 oaword1 8516 oneo 8545 oeoalem 8560 oeoelem 8562 nnaword1 8593 nnneo 8619 erov 8787 enrefg 8955 f1imaen 8988 mapxpen 9107 0sdom1dom 9185 acnlem 10001 djucomen 10131 nnadju 10151 infmap 10529 canthnumlem 10601 tskin 10712 tsksn 10713 tsk0 10716 gruxp 10760 gruina 10771 genpprecl 10954 addsrpr 11028 mulsrpr 11029 supsrlem 11064 mulrid 11172 00id 11349 mul02lem1 11350 ltneg 11678 leneg 11681 suble0 11692 div1 11872 nnaddcl 12209 nnmulcl 12210 nnge1 12214 nnsub 12230 2halves 12400 halfaddsub 12415 addltmul 12418 fcdmnn0fsuppg 12502 zleltp1 12584 nnaddm1cl 12591 zextlt 12608 eluzp1p1 12821 uzaddcl 12863 znq 12911 xrre 13129 xrre2 13130 fzshftral 13576 fraclt1 13764 expadd 14069 expmul 14072 sqmul 14084 expubnd 14143 bernneq 14194 faclbnd2 14256 faclbnd6 14264 hashgadd 14342 hashun2 14348 hashunsnggt 14359 hashssdif 14377 hashfun 14402 ccatlcan 14683 ccatrcan 14684 pfx2 14913 shftval3 15042 01sqrexlem1 15208 caubnd2 15324 bpoly2 16023 bpoly3 16024 fsumcube 16026 efexp 16069 efival 16120 cos01gt0 16159 odd2np1 16311 halfleoddlt 16332 omoe 16334 opeo 16335 divalglem5 16367 sqgcd 16532 nn0seqcvgd 16540 prmdvdssq 16688 phiprmpw 16746 eulerthlem2 16752 odzcllem 16763 pythagtriplem15 16800 pythagtriplem17 16802 pcelnn 16841 4sqlem3 16921 fullfunc 17870 fthfunc 17871 prfcl 18164 curf1cl 18189 curfcl 18193 hofcl 18220 odinv 19491 lsmelvalix 19571 dprdval 19935 lsp0 20915 lss0v 20923 zndvds0 21460 frlmlbs 21706 lindfres 21732 lmisfree 21751 coe1scl 22173 ntrin 22948 lpsscls 23028 restperf 23071 txuni2 23452 txopn 23489 elqtop2 23588 xkocnv 23701 ptcmp 23945 xblpnfps 24283 xblpnf 24284 bl2in 24288 unirnblps 24307 unirnbl 24308 blpnfctr 24324 dscopn 24461 bcthlem4 25227 minveclem2 25326 minveclem4 25332 icombl 25465 i1fadd 25596 i1fmul 25597 dvn1 25828 dvexp3 25882 plyconst 26111 plyid 26114 sincosq1eq 26421 sinord 26443 cxpp1 26589 cxpsqrtlem 26611 cxpsqrt 26612 angneg 26713 dcubic 26756 issqf 27046 ppiub 27115 bposlem1 27195 bposlem2 27196 bposlem9 27203 nosupno 27615 nosupfv 27618 noinfno 27630 noinffv 27633 scutval 27712 scutun12 27722 cuteq0 27744 cuteq1 27746 cofcut1 27828 cofcutr 27832 addscut2 27886 sleadd1 27896 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 negscut2 27946 mulsproplem12 28030 mulscut2 28036 divs1 28107 precsexlem10 28118 precsexlem11 28119 bdayon 28173 n0s0suc 28234 nnzsubs 28273 zmulscld 28285 axlowdimlem6 28874 axlowdimlem14 28882 axcontlem2 28892 pthdlem2 29698 0ewlk 30043 ipasslem1 30760 ipasslem2 30761 ipasslem11 30769 minvecolem2 30804 minvecolem3 30805 minvecolem4 30809 shsva 31249 h1datomi 31510 lnfnmuli 31973 leopsq 32058 nmopleid 32068 opsqrlem6 32074 pjnmopi 32077 hstle 32159 csmdsymi 32263 atcvatlem 32314 dpfrac1 32812 cshf1o 32884 cycpmconjslem2 33112 rspidlid 33346 elsx 34184 dya2iocnrect 34272 cvmliftphtlem 35304 satfv1 35350 satffunlem1lem2 35390 satffunlem1 35394 wlimeq12 35807 fvray 36129 fvline 36132 tailfb 36365 uncov 37595 tan2h 37606 matunitlindflem1 37610 matunitlindflem2 37611 poimirlem32 37646 mblfinlem4 37654 mbfresfi 37660 mbfposadd 37661 itg2addnc 37668 ftc1anclem5 37691 ftc1anclem8 37694 dvasin 37698 heiborlem7 37811 igenidl 38057 atlatmstc 39312 dihglblem2N 41288 eldioph4b 42799 diophren 42801 rmxp1 42921 rmyp1 42922 rmxm1 42923 rmym1 42924 dfgric2 47915 gpgov 48033 dig0 48595 i0oii 48908 iinfconstbas 49055 onetansqsecsq 49750 cotsqcscsq 49751 |
| Copyright terms: Public domain | W3C validator |