Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1119 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: mp3an13 1450 mp3an23 1451 mp3anl3 1455 opelxp 5616 ov 7395 ovmpoa 7406 ovmpo 7411 frecseq123 8069 oaword1 8345 oneo 8374 oeoalem 8389 oeoelem 8391 nnaword1 8422 nnneo 8445 erov 8561 enrefg 8727 f1imaen 8757 mapxpen 8879 acnlem 9735 djucomen 9864 nnadju 9884 infmap 10263 canthnumlem 10335 tskin 10446 tsksn 10447 tsk0 10450 gruxp 10494 gruina 10505 genpprecl 10688 addsrpr 10762 mulsrpr 10763 supsrlem 10798 mulid1 10904 00id 11080 mul02lem1 11081 ltneg 11405 leneg 11408 suble0 11419 div1 11594 nnaddcl 11926 nnmulcl 11927 nnge1 11931 nnsub 11947 2halves 12131 halfaddsub 12136 addltmul 12139 frnnn0fsuppg 12222 zleltp1 12301 nnaddm1cl 12307 zextlt 12324 eluzp1p1 12539 uzaddcl 12573 znq 12621 xrre 12832 xrre2 12833 fzshftral 13273 fraclt1 13450 expadd 13753 expmul 13756 sqmul 13767 expubnd 13823 bernneq 13872 faclbnd2 13933 faclbnd6 13941 hashgadd 14020 hashun2 14026 hashunsnggt 14037 hashssdif 14055 hashfun 14080 ccatlcan 14359 ccatrcan 14360 pfx2 14588 shftval3 14715 sqrlem1 14882 caubnd2 14997 bpoly2 15695 bpoly3 15696 fsumcube 15698 efexp 15738 efival 15789 cos01gt0 15828 odd2np1 15978 halfleoddlt 15999 omoe 16001 opeo 16002 divalglem5 16034 gcdmultipleOLD 16188 sqgcd 16198 nn0seqcvgd 16203 prmdvdssq 16351 phiprmpw 16405 eulerthlem2 16411 odzcllem 16421 pythagtriplem15 16458 pythagtriplem17 16460 pcelnn 16499 4sqlem3 16579 fullfunc 17538 fthfunc 17539 prfcl 17836 curf1cl 17862 curfcl 17866 hofcl 17893 odinv 19083 lsmelvalix 19161 dprdval 19521 lsp0 20186 lss0v 20193 zndvds0 20670 frlmlbs 20914 lindfres 20940 lmisfree 20959 coe1scl 21368 ntrin 22120 lpsscls 22200 restperf 22243 txuni2 22624 txopn 22661 elqtop2 22760 xkocnv 22873 ptcmp 23117 xblpnfps 23456 xblpnf 23457 bl2in 23461 unirnblps 23480 unirnbl 23481 blpnfctr 23497 dscopn 23635 bcthlem4 24396 minveclem2 24495 minveclem4 24501 icombl 24633 i1fadd 24764 i1fmul 24765 dvn1 24995 dvexp3 25047 plyconst 25272 plyid 25275 sincosq1eq 25574 sinord 25595 cxpp1 25740 cxpsqrtlem 25762 cxpsqrt 25763 angneg 25858 dcubic 25901 issqf 26190 ppiub 26257 bposlem1 26337 bposlem2 26338 bposlem9 26345 axlowdimlem6 27218 axlowdimlem14 27226 axcontlem2 27236 pthdlem2 28037 0ewlk 28379 ipasslem1 29094 ipasslem2 29095 ipasslem11 29103 minvecolem2 29138 minvecolem3 29139 minvecolem4 29143 shsva 29583 h1datomi 29844 lnfnmuli 30307 leopsq 30392 nmopleid 30402 opsqrlem6 30408 pjnmopi 30411 hstle 30493 csmdsymi 30597 atcvatlem 30648 dpfrac1 31068 cshf1o 31136 cycpmconjslem2 31324 rspidlid 31472 elsx 32062 dya2iocnrect 32148 cvmliftphtlem 33179 satfv1 33225 satffunlem1lem2 33265 satffunlem1 33269 wlimeq12 33740 nosupno 33833 nosupfv 33836 noinfno 33848 noinffv 33851 scutval 33921 scutun12 33931 cofcut1 34017 cofcutr 34019 fvray 34370 fvline 34373 tailfb 34493 uncov 35685 tan2h 35696 matunitlindflem1 35700 matunitlindflem2 35701 poimirlem32 35736 mblfinlem4 35744 mbfresfi 35750 mbfposadd 35751 itg2addnc 35758 ftc1anclem5 35781 ftc1anclem8 35784 dvasin 35788 heiborlem7 35902 igenidl 36148 el3v3 36301 atlatmstc 37260 dihglblem2N 39235 2xp3dxp2ge1d 40090 factwoffsmonot 40091 eldioph4b 40549 diophren 40551 rmxp1 40670 rmyp1 40671 rmxm1 40672 rmym1 40673 dig0 45840 i0oii 46101 onetansqsecsq 46349 cotsqcscsq 46350 |
Copyright terms: Public domain | W3C validator |