![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: mp3an13 1452 mp3an23 1453 mp3anl3 1457 el3v3 3497 opelxp 5736 ov 7594 ovmpoa 7605 ovmpo 7610 frecseq123 8323 oaword1 8608 oneo 8637 oeoalem 8652 oeoelem 8654 nnaword1 8685 nnneo 8711 erov 8872 enrefg 9044 f1imaen 9077 mapxpen 9209 0sdom1dom 9301 acnlem 10117 djucomen 10247 nnadju 10267 infmap 10645 canthnumlem 10717 tskin 10828 tsksn 10829 tsk0 10832 gruxp 10876 gruina 10887 genpprecl 11070 addsrpr 11144 mulsrpr 11145 supsrlem 11180 mulrid 11288 00id 11465 mul02lem1 11466 ltneg 11790 leneg 11793 suble0 11804 div1 11984 nnaddcl 12316 nnmulcl 12317 nnge1 12321 nnsub 12337 2halves 12521 halfaddsub 12526 addltmul 12529 fcdmnn0fsuppg 12612 zleltp1 12694 nnaddm1cl 12700 zextlt 12717 eluzp1p1 12931 uzaddcl 12969 znq 13017 xrre 13231 xrre2 13232 fzshftral 13672 fraclt1 13853 expadd 14155 expmul 14158 sqmul 14169 expubnd 14227 bernneq 14278 faclbnd2 14340 faclbnd6 14348 hashgadd 14426 hashun2 14432 hashunsnggt 14443 hashssdif 14461 hashfun 14486 ccatlcan 14766 ccatrcan 14767 pfx2 14996 shftval3 15125 01sqrexlem1 15291 caubnd2 15406 bpoly2 16105 bpoly3 16106 fsumcube 16108 efexp 16149 efival 16200 cos01gt0 16239 odd2np1 16389 halfleoddlt 16410 omoe 16412 opeo 16413 divalglem5 16445 sqgcd 16609 nn0seqcvgd 16617 prmdvdssq 16765 phiprmpw 16823 eulerthlem2 16829 odzcllem 16839 pythagtriplem15 16876 pythagtriplem17 16878 pcelnn 16917 4sqlem3 16997 fullfunc 17973 fthfunc 17974 prfcl 18272 curf1cl 18298 curfcl 18302 hofcl 18329 odinv 19603 lsmelvalix 19683 dprdval 20047 lsp0 21030 lss0v 21038 zndvds0 21592 frlmlbs 21840 lindfres 21866 lmisfree 21885 coe1scl 22311 ntrin 23090 lpsscls 23170 restperf 23213 txuni2 23594 txopn 23631 elqtop2 23730 xkocnv 23843 ptcmp 24087 xblpnfps 24426 xblpnf 24427 bl2in 24431 unirnblps 24450 unirnbl 24451 blpnfctr 24467 dscopn 24607 bcthlem4 25380 minveclem2 25479 minveclem4 25485 icombl 25618 i1fadd 25749 i1fmul 25750 dvn1 25982 dvexp3 26036 plyconst 26265 plyid 26268 sincosq1eq 26572 sinord 26594 cxpp1 26740 cxpsqrtlem 26762 cxpsqrt 26763 angneg 26864 dcubic 26907 issqf 27197 ppiub 27266 bposlem1 27346 bposlem2 27347 bposlem9 27354 nosupno 27766 nosupfv 27769 noinfno 27781 noinffv 27784 scutval 27863 scutun12 27873 cuteq0 27895 cuteq1 27896 cofcut1 27972 cofcutr 27976 addscut2 28030 sleadd1 28040 addsuniflem 28052 addsasslem1 28054 addsasslem2 28055 negscut2 28090 mulsproplem12 28171 mulscut2 28177 divs1 28247 precsexlem10 28258 precsexlem11 28259 n0s0suc 28363 nnzsubs 28389 zmulscld 28401 axlowdimlem6 28980 axlowdimlem14 28988 axcontlem2 28998 pthdlem2 29804 0ewlk 30146 ipasslem1 30863 ipasslem2 30864 ipasslem11 30872 minvecolem2 30907 minvecolem3 30908 minvecolem4 30912 shsva 31352 h1datomi 31613 lnfnmuli 32076 leopsq 32161 nmopleid 32171 opsqrlem6 32177 pjnmopi 32180 hstle 32262 csmdsymi 32366 atcvatlem 32417 dpfrac1 32856 cshf1o 32929 cycpmconjslem2 33148 rspidlid 33368 elsx 34158 dya2iocnrect 34246 cvmliftphtlem 35285 satfv1 35331 satffunlem1lem2 35371 satffunlem1 35375 wlimeq12 35783 fvray 36105 fvline 36108 tailfb 36343 uncov 37561 tan2h 37572 matunitlindflem1 37576 matunitlindflem2 37577 poimirlem32 37612 mblfinlem4 37620 mbfresfi 37626 mbfposadd 37627 itg2addnc 37634 ftc1anclem5 37657 ftc1anclem8 37660 dvasin 37664 heiborlem7 37777 igenidl 38023 atlatmstc 39275 dihglblem2N 41251 2xp3dxp2ge1d 42198 factwoffsmonot 42199 eldioph4b 42767 diophren 42769 rmxp1 42889 rmyp1 42890 rmxm1 42891 rmym1 42892 dfgric2 47768 dig0 48340 i0oii 48599 onetansqsecsq 48853 cotsqcscsq 48854 |
Copyright terms: Public domain | W3C validator |