| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3453 opelxp 5667 ov 7514 ovmpoa 7525 ovmpo 7530 frecseq123 8239 oaword1 8494 oneo 8523 oeoalem 8538 oeoelem 8540 nnaword1 8571 nnneo 8597 erov 8765 enrefg 8933 f1imaen 8966 mapxpen 9085 0sdom1dom 9163 acnlem 9980 djucomen 10110 nnadju 10130 infmap 10508 canthnumlem 10580 tskin 10691 tsksn 10692 tsk0 10695 gruxp 10739 gruina 10750 genpprecl 10933 addsrpr 11007 mulsrpr 11008 supsrlem 11043 mulrid 11151 00id 11328 mul02lem1 11329 ltneg 11657 leneg 11660 suble0 11671 div1 11851 nnaddcl 12188 nnmulcl 12189 nnge1 12193 nnsub 12209 2halves 12379 halfaddsub 12394 addltmul 12397 fcdmnn0fsuppg 12481 zleltp1 12563 nnaddm1cl 12570 zextlt 12587 eluzp1p1 12800 uzaddcl 12842 znq 12890 xrre 13108 xrre2 13109 fzshftral 13555 fraclt1 13743 expadd 14048 expmul 14051 sqmul 14063 expubnd 14122 bernneq 14173 faclbnd2 14235 faclbnd6 14243 hashgadd 14321 hashun2 14327 hashunsnggt 14338 hashssdif 14356 hashfun 14381 ccatlcan 14661 ccatrcan 14662 pfx2 14891 shftval3 15020 01sqrexlem1 15186 caubnd2 15302 bpoly2 16001 bpoly3 16002 fsumcube 16004 efexp 16047 efival 16098 cos01gt0 16137 odd2np1 16289 halfleoddlt 16310 omoe 16312 opeo 16313 divalglem5 16345 sqgcd 16510 nn0seqcvgd 16518 prmdvdssq 16666 phiprmpw 16724 eulerthlem2 16730 odzcllem 16741 pythagtriplem15 16778 pythagtriplem17 16780 pcelnn 16819 4sqlem3 16899 fullfunc 17852 fthfunc 17853 prfcl 18146 curf1cl 18171 curfcl 18175 hofcl 18202 odinv 19477 lsmelvalix 19557 dprdval 19921 lsp0 20949 lss0v 20957 zndvds0 21494 frlmlbs 21741 lindfres 21767 lmisfree 21786 coe1scl 22208 ntrin 22983 lpsscls 23063 restperf 23106 txuni2 23487 txopn 23524 elqtop2 23623 xkocnv 23736 ptcmp 23980 xblpnfps 24318 xblpnf 24319 bl2in 24323 unirnblps 24342 unirnbl 24343 blpnfctr 24359 dscopn 24496 bcthlem4 25262 minveclem2 25361 minveclem4 25367 icombl 25500 i1fadd 25631 i1fmul 25632 dvn1 25863 dvexp3 25917 plyconst 26146 plyid 26149 sincosq1eq 26456 sinord 26478 cxpp1 26624 cxpsqrtlem 26646 cxpsqrt 26647 angneg 26748 dcubic 26791 issqf 27081 ppiub 27150 bposlem1 27230 bposlem2 27231 bposlem9 27238 nosupno 27650 nosupfv 27653 noinfno 27665 noinffv 27668 scutval 27748 scutun12 27758 cuteq0 27783 cuteq1 27785 cofcut1 27870 cofcutr 27874 addscut2 27928 sleadd1 27938 addsuniflem 27950 addsasslem1 27952 addsasslem2 27953 negscut2 27988 mulsproplem12 28072 mulscut2 28078 divs1 28149 precsexlem10 28160 precsexlem11 28161 bdayon 28215 n0s0suc 28276 nnzsubs 28315 zmulscld 28327 axlowdimlem6 28929 axlowdimlem14 28937 axcontlem2 28947 pthdlem2 29750 0ewlk 30095 ipasslem1 30812 ipasslem2 30813 ipasslem11 30821 minvecolem2 30856 minvecolem3 30857 minvecolem4 30861 shsva 31301 h1datomi 31562 lnfnmuli 32025 leopsq 32110 nmopleid 32120 opsqrlem6 32126 pjnmopi 32129 hstle 32211 csmdsymi 32315 atcvatlem 32366 dpfrac1 32864 cshf1o 32936 cycpmconjslem2 33129 rspidlid 33341 elsx 34179 dya2iocnrect 34267 cvmliftphtlem 35299 satfv1 35345 satffunlem1lem2 35385 satffunlem1 35389 wlimeq12 35802 fvray 36124 fvline 36127 tailfb 36360 uncov 37590 tan2h 37601 matunitlindflem1 37605 matunitlindflem2 37606 poimirlem32 37641 mblfinlem4 37649 mbfresfi 37655 mbfposadd 37656 itg2addnc 37663 ftc1anclem5 37686 ftc1anclem8 37689 dvasin 37693 heiborlem7 37806 igenidl 38052 atlatmstc 39307 dihglblem2N 41283 eldioph4b 42794 diophren 42796 rmxp1 42916 rmyp1 42917 rmxm1 42918 rmym1 42919 dfgric2 47910 gpgov 48028 dig0 48590 i0oii 48903 iinfconstbas 49050 onetansqsecsq 49745 cotsqcscsq 49746 |
| Copyright terms: Public domain | W3C validator |