![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1120 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: mp3an13 1451 mp3an23 1452 mp3anl3 1456 opelxp 5712 ov 7555 ovmpoa 7566 ovmpo 7571 frecseq123 8273 oaword1 8558 oneo 8587 oeoalem 8602 oeoelem 8604 nnaword1 8635 nnneo 8660 erov 8814 enrefg 8986 f1imaen 9018 mapxpen 9149 0sdom1dom 9244 acnlem 10049 djucomen 10178 nnadju 10198 infmap 10577 canthnumlem 10649 tskin 10760 tsksn 10761 tsk0 10764 gruxp 10808 gruina 10819 genpprecl 11002 addsrpr 11076 mulsrpr 11077 supsrlem 11112 mulrid 11219 00id 11396 mul02lem1 11397 ltneg 11721 leneg 11724 suble0 11735 div1 11910 nnaddcl 12242 nnmulcl 12243 nnge1 12247 nnsub 12263 2halves 12447 halfaddsub 12452 addltmul 12455 fcdmnn0fsuppg 12538 zleltp1 12620 nnaddm1cl 12626 zextlt 12643 eluzp1p1 12857 uzaddcl 12895 znq 12943 xrre 13155 xrre2 13156 fzshftral 13596 fraclt1 13774 expadd 14077 expmul 14080 sqmul 14091 expubnd 14149 bernneq 14199 faclbnd2 14258 faclbnd6 14266 hashgadd 14344 hashun2 14350 hashunsnggt 14361 hashssdif 14379 hashfun 14404 ccatlcan 14675 ccatrcan 14676 pfx2 14905 shftval3 15030 01sqrexlem1 15196 caubnd2 15311 bpoly2 16008 bpoly3 16009 fsumcube 16011 efexp 16051 efival 16102 cos01gt0 16141 odd2np1 16291 halfleoddlt 16312 omoe 16314 opeo 16315 divalglem5 16347 sqgcd 16509 nn0seqcvgd 16514 prmdvdssq 16662 phiprmpw 16716 eulerthlem2 16722 odzcllem 16732 pythagtriplem15 16769 pythagtriplem17 16771 pcelnn 16810 4sqlem3 16890 fullfunc 17866 fthfunc 17867 prfcl 18165 curf1cl 18191 curfcl 18195 hofcl 18222 odinv 19477 lsmelvalix 19557 dprdval 19921 lsp0 20852 lss0v 20860 zndvds0 21416 frlmlbs 21662 lindfres 21688 lmisfree 21707 coe1scl 22129 ntrin 22885 lpsscls 22965 restperf 23008 txuni2 23389 txopn 23426 elqtop2 23525 xkocnv 23638 ptcmp 23882 xblpnfps 24221 xblpnf 24222 bl2in 24226 unirnblps 24245 unirnbl 24246 blpnfctr 24262 dscopn 24402 bcthlem4 25175 minveclem2 25274 minveclem4 25280 icombl 25413 i1fadd 25544 i1fmul 25545 dvn1 25776 dvexp3 25830 plyconst 26058 plyid 26061 sincosq1eq 26362 sinord 26383 cxpp1 26528 cxpsqrtlem 26550 cxpsqrt 26551 angneg 26649 dcubic 26692 issqf 26981 ppiub 27050 bposlem1 27130 bposlem2 27131 bposlem9 27138 nosupno 27549 nosupfv 27552 noinfno 27564 noinffv 27567 scutval 27646 scutun12 27656 cuteq0 27678 cuteq1 27679 cofcut1 27753 cofcutr 27757 addscut2 27809 sleadd1 27819 addsuniflem 27831 addsasslem1 27833 addsasslem2 27834 negscut2 27865 mulsproplem12 27940 mulscut2 27946 divs1 28016 precsexlem10 28027 precsexlem11 28028 axlowdimlem6 28638 axlowdimlem14 28646 axcontlem2 28656 pthdlem2 29458 0ewlk 29800 ipasslem1 30517 ipasslem2 30518 ipasslem11 30526 minvecolem2 30561 minvecolem3 30562 minvecolem4 30566 shsva 31006 h1datomi 31267 lnfnmuli 31730 leopsq 31815 nmopleid 31825 opsqrlem6 31831 pjnmopi 31834 hstle 31916 csmdsymi 32020 atcvatlem 32071 dpfrac1 32491 cshf1o 32559 cycpmconjslem2 32750 rspidlid 32927 elsx 33656 dya2iocnrect 33744 cvmliftphtlem 34772 satfv1 34818 satffunlem1lem2 34858 satffunlem1 34862 wlimeq12 35261 fvray 35583 fvline 35586 tailfb 35726 uncov 36933 tan2h 36944 matunitlindflem1 36948 matunitlindflem2 36949 poimirlem32 36984 mblfinlem4 36992 mbfresfi 36998 mbfposadd 36999 itg2addnc 37006 ftc1anclem5 37029 ftc1anclem8 37032 dvasin 37036 heiborlem7 37149 igenidl 37395 el3v3 37553 atlatmstc 38653 dihglblem2N 40629 2xp3dxp2ge1d 41489 factwoffsmonot 41490 eldioph4b 42012 diophren 42014 rmxp1 42134 rmyp1 42135 rmxm1 42136 rmym1 42137 dig0 47454 i0oii 47714 onetansqsecsq 47968 cotsqcscsq 47969 |
Copyright terms: Public domain | W3C validator |