| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1121 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 20 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an13 1454 mp3an23 1455 mp3anl3 1459 el3v3 3453 opelxp 5667 ov 7513 ovmpoa 7524 ovmpo 7529 frecseq123 8238 oaword1 8493 oneo 8522 oeoalem 8537 oeoelem 8539 nnaword1 8570 nnneo 8596 erov 8764 enrefg 8932 f1imaen 8965 mapxpen 9084 0sdom1dom 9162 acnlem 9979 djucomen 10109 nnadju 10129 infmap 10507 canthnumlem 10579 tskin 10690 tsksn 10691 tsk0 10694 gruxp 10738 gruina 10749 genpprecl 10932 addsrpr 11006 mulsrpr 11007 supsrlem 11042 mulrid 11150 00id 11327 mul02lem1 11328 ltneg 11656 leneg 11659 suble0 11670 div1 11850 nnaddcl 12187 nnmulcl 12188 nnge1 12192 nnsub 12208 2halves 12378 halfaddsub 12393 addltmul 12396 fcdmnn0fsuppg 12480 zleltp1 12562 nnaddm1cl 12569 zextlt 12586 eluzp1p1 12799 uzaddcl 12841 znq 12889 xrre 13107 xrre2 13108 fzshftral 13554 fraclt1 13742 expadd 14047 expmul 14050 sqmul 14062 expubnd 14121 bernneq 14172 faclbnd2 14234 faclbnd6 14242 hashgadd 14320 hashun2 14326 hashunsnggt 14337 hashssdif 14355 hashfun 14380 ccatlcan 14660 ccatrcan 14661 pfx2 14890 shftval3 15019 01sqrexlem1 15185 caubnd2 15301 bpoly2 16000 bpoly3 16001 fsumcube 16003 efexp 16046 efival 16097 cos01gt0 16136 odd2np1 16288 halfleoddlt 16309 omoe 16311 opeo 16312 divalglem5 16344 sqgcd 16509 nn0seqcvgd 16517 prmdvdssq 16665 phiprmpw 16723 eulerthlem2 16729 odzcllem 16740 pythagtriplem15 16777 pythagtriplem17 16779 pcelnn 16818 4sqlem3 16898 fullfunc 17851 fthfunc 17852 prfcl 18145 curf1cl 18170 curfcl 18174 hofcl 18201 odinv 19476 lsmelvalix 19556 dprdval 19920 lsp0 20948 lss0v 20956 zndvds0 21493 frlmlbs 21740 lindfres 21766 lmisfree 21785 coe1scl 22207 ntrin 22982 lpsscls 23062 restperf 23105 txuni2 23486 txopn 23523 elqtop2 23622 xkocnv 23735 ptcmp 23979 xblpnfps 24317 xblpnf 24318 bl2in 24322 unirnblps 24341 unirnbl 24342 blpnfctr 24358 dscopn 24495 bcthlem4 25261 minveclem2 25360 minveclem4 25366 icombl 25499 i1fadd 25630 i1fmul 25631 dvn1 25862 dvexp3 25916 plyconst 26145 plyid 26148 sincosq1eq 26455 sinord 26477 cxpp1 26623 cxpsqrtlem 26645 cxpsqrt 26646 angneg 26747 dcubic 26790 issqf 27080 ppiub 27149 bposlem1 27229 bposlem2 27230 bposlem9 27237 nosupno 27649 nosupfv 27652 noinfno 27664 noinffv 27667 scutval 27747 scutun12 27757 cuteq0 27782 cuteq1 27784 cofcut1 27869 cofcutr 27873 addscut2 27927 sleadd1 27937 addsuniflem 27949 addsasslem1 27951 addsasslem2 27952 negscut2 27987 mulsproplem12 28071 mulscut2 28077 divs1 28148 precsexlem10 28159 precsexlem11 28160 bdayon 28214 n0s0suc 28275 nnzsubs 28314 zmulscld 28326 axlowdimlem6 28928 axlowdimlem14 28936 axcontlem2 28946 pthdlem2 29749 0ewlk 30094 ipasslem1 30811 ipasslem2 30812 ipasslem11 30820 minvecolem2 30855 minvecolem3 30856 minvecolem4 30860 shsva 31300 h1datomi 31561 lnfnmuli 32024 leopsq 32109 nmopleid 32119 opsqrlem6 32125 pjnmopi 32128 hstle 32210 csmdsymi 32314 atcvatlem 32365 dpfrac1 32863 cshf1o 32935 cycpmconjslem2 33128 rspidlid 33340 elsx 34178 dya2iocnrect 34266 cvmliftphtlem 35298 satfv1 35344 satffunlem1lem2 35384 satffunlem1 35388 wlimeq12 35801 fvray 36123 fvline 36126 tailfb 36359 uncov 37589 tan2h 37600 matunitlindflem1 37604 matunitlindflem2 37605 poimirlem32 37640 mblfinlem4 37648 mbfresfi 37654 mbfposadd 37655 itg2addnc 37662 ftc1anclem5 37685 ftc1anclem8 37688 dvasin 37692 heiborlem7 37805 igenidl 38051 atlatmstc 39306 dihglblem2N 41282 eldioph4b 42793 diophren 42795 rmxp1 42915 rmyp1 42916 rmxm1 42917 rmym1 42918 dfgric2 47909 gpgov 48027 dig0 48589 i0oii 48902 iinfconstbas 49049 onetansqsecsq 49744 cotsqcscsq 49745 |
| Copyright terms: Public domain | W3C validator |