MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabd3 Structured version   Visualization version   GIF version

Theorem elabd3 3671
Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab 3681. (Contributed by GG, 12-Oct-2024.)
Hypotheses
Ref Expression
elabd3.ex (𝜑𝐴𝑉)
elabd3.is ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
elabd3 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem elabd3
StepHypRef Expression
1 elabd3.ex . 2 (𝜑𝐴𝑉)
2 eqidd 2736 . 2 (𝜑 → {𝑥𝜓} = {𝑥𝜓})
3 elabd3.is . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
41, 2, 3elabd2 3670 1 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814
This theorem is referenced by:  sbcied  3837
  Copyright terms: Public domain W3C validator