| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabd3 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab 3635. (Contributed by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabd3.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elabd3.is | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elabd3 | ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd3.ex | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜓}) | |
| 3 | elabd3.is | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | elabd2 3625 | 1 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: sbcied 3785 |
| Copyright terms: Public domain | W3C validator |