Proof of Theorem elabgt
Step | Hyp | Ref
| Expression |
1 | | elab6g 3600 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
2 | 1 | adantr 481 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
3 | | elisset 2820 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) |
4 | | biimp 214 |
. . . . . . . . 9
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
5 | 4 | imim3i 64 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓))) |
6 | 5 | al2imi 1818 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
7 | | 19.23v 1945 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
8 | 6, 7 | syl6ib 250 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
9 | 8 | com3r 87 |
. . . . 5
⊢
(∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓))) |
10 | | biimpr 219 |
. . . . . . . . 9
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
11 | 10 | imim2i 16 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜓 → 𝜑))) |
12 | 11 | alimi 1814 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑))) |
13 | | bi2.04 389 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 → (𝜓 → 𝜑)) ↔ (𝜓 → (𝑥 = 𝐴 → 𝜑))) |
14 | 13 | albii 1822 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) ↔ ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) |
15 | | 19.21v 1942 |
. . . . . . . 8
⊢
(∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
16 | 14, 15 | sylbb 218 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
17 | 12, 16 | syl 17 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
18 | 17 | a1i 11 |
. . . . 5
⊢
(∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
19 | 9, 18 | impbidd 209 |
. . . 4
⊢
(∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓))) |
20 | 3, 19 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓))) |
21 | 20 | imp 407 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
22 | 2, 21 | bitrd 278 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |