Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgt Structured version   Visualization version   GIF version

Theorem elabgt 3582
 Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3587.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
elabgt ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elabgt
StepHypRef Expression
1 nfcv 2919 . . 3 𝑥𝐴
2 nfab1 2921 . . . . 5 𝑥{𝑥𝜑}
32nfel2 2937 . . . 4 𝑥 𝐴 ∈ {𝑥𝜑}
4 nfv 1915 . . . 4 𝑥𝜓
53, 4nfbi 1904 . . 3 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 pm5.5 365 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
71, 5, 6spcgf 3508 . 2 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 abid 2739 . . . . . . 7 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1 2839 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
108, 9bitr3id 288 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝐴 ∈ {𝑥𝜑}))
1110bibi1d 347 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1211biimpd 232 . . . 4 (𝑥 = 𝐴 → ((𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1312a2i 14 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1413alimi 1813 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
157, 14impel 509 1 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2111  {cab 2735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-v 3411 This theorem is referenced by:  elrab3t  3601  dfrtrcl2  14469  iinabrex  30430  abfmpeld  30515  abfmpel  30516  dftrcl3  40794  dfrtrcl3  40807
 Copyright terms: Public domain W3C validator