| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabgt | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3646.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 11-May-2025.) (Proof shortened by SN, 1-Dec-2025.) |
| Ref | Expression |
|---|---|
| elabgt | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab6g 3638 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
| 2 | pm5.74 270 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ↔ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓))) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓))) |
| 4 | 3 | alimi 1811 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓))) |
| 5 | albi 1818 | . . . 4 ⊢ (∀𝑥((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
| 7 | 1, 6 | sylan9bb 509 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
| 8 | 19.23v 1942 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 9 | elisset 2811 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 10 | pm5.5 361 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
| 12 | 8, 11 | bitrid 283 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
| 14 | 7, 13 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: elabg 3646 elrab3t 3661 dfrtrcl2 15035 iinabrex 32505 abfmpeld 32585 abfmpel 32586 bj-elgab 36934 dftrcl3 43716 dfrtrcl3 43729 |
| Copyright terms: Public domain | W3C validator |