MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgt Structured version   Visualization version   GIF version

Theorem elabgt 3596
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3600.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.)
Assertion
Ref Expression
elabgt ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elabgt
StepHypRef Expression
1 elab6g 3593 . . 3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
21adantr 480 . 2 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
3 elisset 2820 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
4 biimp 214 . . . . . . . . 9 ((𝜑𝜓) → (𝜑𝜓))
54imim3i 64 . . . . . . . 8 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓)))
65al2imi 1819 . . . . . . 7 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) → ∀𝑥(𝑥 = 𝐴𝜓)))
7 19.23v 1946 . . . . . . 7 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
86, 7syl6ib 250 . . . . . 6 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴𝜓)))
98com3r 87 . . . . 5 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜓)))
10 biimpr 219 . . . . . . . . 9 ((𝜑𝜓) → (𝜓𝜑))
1110imim2i 16 . . . . . . . 8 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1211alimi 1815 . . . . . . 7 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)))
13 bi2.04 388 . . . . . . . . 9 ((𝑥 = 𝐴 → (𝜓𝜑)) ↔ (𝜓 → (𝑥 = 𝐴𝜑)))
1413albii 1823 . . . . . . . 8 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) ↔ ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15 19.21v 1943 . . . . . . . 8 (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1614, 15sylbb 218 . . . . . . 7 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1712, 16syl 17 . . . . . 6 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1817a1i 11 . . . . 5 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
199, 18impbidd 209 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)))
203, 19syl 17 . . 3 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)))
2120imp 406 . 2 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
222, 21bitrd 278 1 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  elrab3t  3616  dfrtrcl2  14701  iinabrex  30809  abfmpeld  30893  abfmpel  30894  bj-elgab  35054  dftrcl3  41217  dfrtrcl3  41230
  Copyright terms: Public domain W3C validator