MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgt Structured version   Visualization version   GIF version

Theorem elabgt 3641
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3646.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 11-May-2025.) (Proof shortened by SN, 1-Dec-2025.)
Assertion
Ref Expression
elabgt ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elabgt
StepHypRef Expression
1 elab6g 3638 . . 3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2 pm5.74 270 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) ↔ ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓)))
32biimpi 216 . . . . 5 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓)))
43alimi 1811 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓)))
5 albi 1818 . . . 4 (∀𝑥((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓)))
64, 5syl 17 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓)))
71, 6sylan9bb 509 . 2 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ ∀𝑥(𝑥 = 𝐴𝜓)))
8 19.23v 1942 . . . 4 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
9 elisset 2811 . . . . 5 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
10 pm5.5 361 . . . . 5 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
119, 10syl 17 . . . 4 (𝐴𝐵 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
128, 11bitrid 283 . . 3 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ 𝜓))
1312adantr 480 . 2 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∀𝑥(𝑥 = 𝐴𝜓) ↔ 𝜓))
147, 13bitrd 279 1 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804
This theorem is referenced by:  elabg  3646  elrab3t  3661  dfrtrcl2  15035  iinabrex  32505  abfmpeld  32585  abfmpel  32586  bj-elgab  36934  dftrcl3  43716  dfrtrcl3  43729
  Copyright terms: Public domain W3C validator