Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elabd2 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab 3602. (Contributed by Gino Giotto, 12-Oct-2024.) (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elabd2.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elabd2.eq | ⊢ (𝜑 → 𝐵 = {𝑥 ∣ 𝜓}) |
elabd2.is | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elabd2 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabd2.ex | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elabd2.eq | . . . . 5 ⊢ (𝜑 → 𝐵 = {𝑥 ∣ 𝜓}) | |
3 | 2 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) |
4 | elab6g 3593 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) | |
5 | 3, 4 | sylan9bb 509 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
6 | elisset 2820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
7 | elabd2.is | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
8 | 7 | pm5.74da 800 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 = 𝐴 → 𝜓) ↔ (𝑥 = 𝐴 → 𝜒))) |
9 | 8 | albidv 1924 | . . . . . 6 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜒))) |
10 | 19.23v 1946 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜒) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜒)) | |
11 | 9, 10 | bitrdi 286 | . . . . 5 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜒))) |
12 | pm5.5 361 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜒) ↔ 𝜒)) | |
13 | 11, 12 | sylan9bb 509 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ 𝜒)) |
14 | 6, 13 | sylan2 592 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ 𝜒)) |
15 | 5, 14 | bitrd 278 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ 𝐵 ↔ 𝜒)) |
16 | 1, 15 | mpdan 683 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: elabd3 3595 elimasng1 5983 |
Copyright terms: Public domain | W3C validator |