| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3745 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | elabd3 3628 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbcied2 3789 sbc2ie 3820 sbc2iedv 3821 sbc3ie 3822 sbcralt 3826 csbied 3889 euotd 5460 fmptsnd 7109 riota5f 7338 fpwwe2lem11 10554 fpwwe2lem12 10555 brfi1uzind 14433 opfi1uzind 14436 sbcie3s 17091 issubc 17760 gsumvalx 18568 dmdprd 19897 dprdval 19902 isomnd 20020 issrg 20091 issrng 20747 isorng 20764 islmhm 20949 isphl 21553 istmd 23977 istgp 23980 isnlm 24579 isclm 24980 iscph 25086 iscms 25261 limcfval 25789 ewlksfval 29565 sbcies 32450 abfmpeld 32611 abfmpel 32612 rprmval 33466 f1o2d2 42209 |
| Copyright terms: Public domain | W3C validator |