MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcied Structured version   Visualization version   GIF version

Theorem sbcied 3781
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2146, ax-12 2182. (Revised by GG, 12-Oct-2024.)
Hypotheses
Ref Expression
sbcied.1 (𝜑𝐴𝑉)
sbcied.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
sbcied (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbcied
StepHypRef Expression
1 df-sbc 3738 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
2 sbcied.1 . . 3 (𝜑𝐴𝑉)
3 sbcied.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3elabd3 3622 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜒))
51, 4bitrid 283 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-sbc 3738
This theorem is referenced by:  sbcied2  3782  sbc2ie  3813  sbc2iedv  3814  sbc3ie  3815  sbcralt  3819  csbied  3882  euotd  5458  fmptsnd  7111  riota5f  7339  fpwwe2lem11  10541  fpwwe2lem12  10542  brfi1uzind  14419  opfi1uzind  14422  sbcie3s  17077  issubc  17746  gsumvalx  18588  dmdprd  19916  dprdval  19921  isomnd  20039  issrg  20110  issrng  20763  isorng  20780  islmhm  20965  isphl  21569  istmd  23992  istgp  23995  isnlm  24593  isclm  24994  iscph  25100  iscms  25275  limcfval  25803  ewlksfval  29584  sbcies  32471  abfmpeld  32640  abfmpel  32641  rprmval  33490  f1o2d2  42354
  Copyright terms: Public domain W3C validator