| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3754 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | elabd3 3637 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbcied2 3798 sbc2ie 3829 sbc2iedv 3830 sbc3ie 3831 sbcralt 3835 csbied 3898 euotd 5473 fmptsnd 7143 riota5f 7372 fpwwe2lem11 10594 fpwwe2lem12 10595 brfi1uzind 14473 opfi1uzind 14476 sbcie3s 17132 issubc 17797 gsumvalx 18603 dmdprd 19930 dprdval 19935 issrg 20097 issrng 20753 islmhm 20934 isphl 21537 istmd 23961 istgp 23964 isnlm 24563 isclm 24964 iscph 25070 iscms 25245 limcfval 25773 ewlksfval 29529 sbcies 32417 abfmpeld 32578 abfmpel 32579 isomnd 33015 isorng 33277 rprmval 33487 f1o2d2 42221 |
| Copyright terms: Public domain | W3C validator |