Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2141, ax-12 2175. (Revised by Gino Giotto, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3721 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | elabd3 3604 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
5 | 1, 4 | bitrid 282 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {cab 2717 [wsbc 3720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-sbc 3721 |
This theorem is referenced by: sbcied2 3767 sbc2ie 3804 sbc2iedv 3806 sbc3ie 3807 sbcralt 3810 csbied 3875 euotd 5431 fmptsnd 7038 riota5f 7257 fpwwe2lem11 10398 fpwwe2lem12 10399 brfi1uzind 14210 opfi1uzind 14213 sbcie3s 16861 issubc 17548 gsumvalx 18358 dmdprd 19599 dprdval 19604 issrg 19741 issrng 20108 islmhm 20287 isphl 20831 isassa 21061 istmd 23223 istgp 23226 isnlm 23837 isclm 24225 iscph 24332 iscms 24507 limcfval 25034 ewlksfval 27966 sbcies 30832 abfmpeld 30987 abfmpel 30988 isomnd 31323 isorng 31494 rprmval 31660 |
Copyright terms: Public domain | W3C validator |