Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | elabd3 3595 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
5 | 1, 4 | syl5bb 282 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbcied2 3758 sbc2ie 3795 sbc2iedv 3797 sbc3ie 3798 sbcralt 3801 csbied 3866 euotd 5421 fmptsnd 7023 riota5f 7241 fpwwe2lem11 10328 fpwwe2lem12 10329 brfi1uzind 14140 opfi1uzind 14143 sbcie3s 16791 issubc 17466 gsumvalx 18275 dmdprd 19516 dprdval 19521 issrg 19658 issrng 20025 islmhm 20204 isphl 20745 isassa 20973 istmd 23133 istgp 23136 isnlm 23745 isclm 24133 iscph 24239 iscms 24414 limcfval 24941 ewlksfval 27871 sbcies 30737 abfmpeld 30893 abfmpel 30894 isomnd 31229 isorng 31400 rprmval 31566 |
Copyright terms: Public domain | W3C validator |