| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2146, ax-12 2182. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3738 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | elabd3 3622 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 |
| This theorem is referenced by: sbcied2 3782 sbc2ie 3813 sbc2iedv 3814 sbc3ie 3815 sbcralt 3819 csbied 3882 euotd 5458 fmptsnd 7111 riota5f 7339 fpwwe2lem11 10541 fpwwe2lem12 10542 brfi1uzind 14419 opfi1uzind 14422 sbcie3s 17077 issubc 17746 gsumvalx 18588 dmdprd 19916 dprdval 19921 isomnd 20039 issrg 20110 issrng 20763 isorng 20780 islmhm 20965 isphl 21569 istmd 23992 istgp 23995 isnlm 24593 isclm 24994 iscph 25100 iscms 25275 limcfval 25803 ewlksfval 29584 sbcies 32471 abfmpeld 32640 abfmpel 32641 rprmval 33490 f1o2d2 42354 |
| Copyright terms: Public domain | W3C validator |