Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3718 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | elabd3 3603 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
5 | 1, 4 | bitrid 282 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 {cab 2716 [wsbc 3717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-sbc 3718 |
This theorem is referenced by: sbcied2 3764 sbc2ie 3800 sbc2iedv 3802 sbc3ie 3803 sbcralt 3806 csbied 3871 euotd 5428 fmptsnd 7050 riota5f 7270 fpwwe2lem11 10406 fpwwe2lem12 10407 brfi1uzind 14221 opfi1uzind 14224 sbcie3s 16872 issubc 17559 gsumvalx 18369 dmdprd 19610 dprdval 19615 issrg 19752 issrng 20119 islmhm 20298 isphl 20842 isassa 21072 istmd 23234 istgp 23237 isnlm 23848 isclm 24236 iscph 24343 iscms 24518 limcfval 25045 ewlksfval 27977 sbcies 30845 abfmpeld 31000 abfmpel 31001 isomnd 31336 isorng 31507 rprmval 31673 |
Copyright terms: Public domain | W3C validator |