MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcied Structured version   Visualization version   GIF version

Theorem sbcied 3788
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 12-Oct-2024.)
Hypotheses
Ref Expression
sbcied.1 (𝜑𝐴𝑉)
sbcied.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
sbcied (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbcied
StepHypRef Expression
1 df-sbc 3745 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
2 sbcied.1 . . 3 (𝜑𝐴𝑉)
3 sbcied.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3elabd3 3628 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜒))
51, 4bitrid 283 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  [wsbc 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3745
This theorem is referenced by:  sbcied2  3789  sbc2ie  3820  sbc2iedv  3821  sbc3ie  3822  sbcralt  3826  csbied  3889  euotd  5460  fmptsnd  7109  riota5f  7338  fpwwe2lem11  10554  fpwwe2lem12  10555  brfi1uzind  14433  opfi1uzind  14436  sbcie3s  17091  issubc  17760  gsumvalx  18568  dmdprd  19897  dprdval  19902  isomnd  20020  issrg  20091  issrng  20747  isorng  20764  islmhm  20949  isphl  21553  istmd  23977  istgp  23980  isnlm  24579  isclm  24980  iscph  25086  iscms  25261  limcfval  25789  ewlksfval  29565  sbcies  32450  abfmpeld  32611  abfmpel  32612  rprmval  33466  f1o2d2  42209
  Copyright terms: Public domain W3C validator