![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2138, ax-12 2174. (Revised by GG, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcied | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3791 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | sbcied.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | sbcied.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | elabd3 3670 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
5 | 1, 4 | bitrid 283 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 [wsbc 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-sbc 3791 |
This theorem is referenced by: sbcied2 3838 sbc2ie 3873 sbc2iedv 3875 sbc3ie 3876 sbcralt 3880 csbied 3945 euotd 5522 fmptsnd 7188 riota5f 7415 fpwwe2lem11 10678 fpwwe2lem12 10679 brfi1uzind 14543 opfi1uzind 14546 sbcie3s 17195 issubc 17885 gsumvalx 18701 dmdprd 20032 dprdval 20037 issrg 20205 issrng 20861 islmhm 21043 isphl 21663 istmd 24097 istgp 24100 isnlm 24711 isclm 25110 iscph 25217 iscms 25392 limcfval 25921 ewlksfval 29633 sbcies 32515 abfmpeld 32670 abfmpel 32671 isomnd 33060 isorng 33308 rprmval 33523 f1o2d2 42252 |
Copyright terms: Public domain | W3C validator |