MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elequ12 Structured version   Visualization version   GIF version

Theorem elequ12 2126
Description: An identity law for the non-logical predicate, which combines elequ1 2115 and elequ2 2123. The analogous theorems for class terms are eleq1 2832, eleq2 2833, and eleq12 2834 respectively. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
elequ12 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))

Proof of Theorem elequ12
StepHypRef Expression
1 elequ1 2115 . 2 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
2 elequ2 2123 . 2 (𝑧 = 𝑡 → (𝑦𝑧𝑦𝑡))
31, 2sylan9bb 509 1 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  ru0  2127  fvineqsneu  37377
  Copyright terms: Public domain W3C validator