![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ru0 | Structured version Visualization version GIF version |
Description: The FOL statement used in the standard proof of Russell's paradox ru 3802. (Contributed by NM, 7-Aug-1994.) Extract from proof of ru 3802 and reduce axiom usage. (Revised by BJ, 12-Oct-2019.) |
Ref | Expression |
---|---|
ru0 | ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 386 | . 2 ⊢ ¬ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦) | |
2 | elequ1 2115 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
3 | elequ12 2126 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
4 | 3 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
5 | 4 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
6 | 2, 5 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦))) |
7 | 6 | spvv 1996 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) → (𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦)) |
8 | 1, 7 | mto 197 | 1 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: ru 3802 bj-ru1 36909 |
Copyright terms: Public domain | W3C validator |