MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ru0 Structured version   Visualization version   GIF version

Theorem ru0 2127
Description: The FOL statement used in the standard proof of Russell's paradox ru 3802. (Contributed by NM, 7-Aug-1994.) Extract from proof of ru 3802 and reduce axiom usage. (Revised by BJ, 12-Oct-2019.)
Assertion
Ref Expression
ru0 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem ru0
StepHypRef Expression
1 pm5.19 386 . 2 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 elequ1 2115 . . . 4 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 elequ12 2126 . . . . . 6 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
43anidms 566 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
54notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
62, 5bibi12d 345 . . 3 (𝑥 = 𝑦 → ((𝑥𝑦 ↔ ¬ 𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
76spvv 1996 . 2 (∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
81, 7mto 197 1 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  ru  3802  bj-ru1  36909
  Copyright terms: Public domain W3C validator