Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvineqsneu Structured version   Visualization version   GIF version

Theorem fvineqsneu 34695
Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021.)
Assertion
Ref Expression
fvineqsneu ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥)
Distinct variable groups:   𝐴,𝑞,𝑥   𝐹,𝑞,𝑥   𝐴,𝑝   𝐹,𝑝

Proof of Theorem fvineqsneu
Dummy variables 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnfvelrn 6848 . . . . . 6 ((𝐹 Fn 𝐴𝑜𝐴) → (𝐹𝑜) ∈ ran 𝐹)
21ex 415 . . . . 5 (𝐹 Fn 𝐴 → (𝑜𝐴 → (𝐹𝑜) ∈ ran 𝐹))
32adantr 483 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → (𝐹𝑜) ∈ ran 𝐹))
4 fnrnfv 6725 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑝𝐴 𝑦 = (𝐹𝑝)})
54abeq2d 2947 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑦 = (𝐹𝑝)))
65adantr 483 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑦 = (𝐹𝑝)))
7 nfv 1915 . . . . . . . . . 10 𝑝 𝐹 Fn 𝐴
8 nfra1 3219 . . . . . . . . . 10 𝑝𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}
97, 8nfan 1900 . . . . . . . . 9 𝑝(𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝})
10 nfv 1915 . . . . . . . . 9 𝑝𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))
11 eleq2 2901 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑜 ∈ (𝐹𝑝)))
12 elin 4169 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ (𝑜 ∈ (𝐹𝑝) ∧ 𝑜𝐴))
1312rbaib 541 . . . . . . . . . . . . . . . . . . . 20 (𝑜𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹𝑝)))
1413ad2antll 727 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹𝑝)))
15 rsp 3205 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → ((𝐹𝑝) ∩ 𝐴) = {𝑝}))
16 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ {𝑝}))
17 velsn 4583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑜 ∈ {𝑝} ↔ 𝑜 = 𝑝)
18 equcom 2025 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑜 = 𝑝𝑝 = 𝑜)
1917, 18bitri 277 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ {𝑝} ↔ 𝑝 = 𝑜)
2016, 19syl6bb 289 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))
2115, 20syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2221adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2322adantrd 494 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ((𝑝𝐴𝑜𝐴) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2423imp 409 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))
2514, 24bitr3d 283 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ (𝐹𝑝) ↔ 𝑝 = 𝑜))
2611, 25sylan9bbr 513 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) ∧ 𝑦 = (𝐹𝑝)) → (𝑜𝑦𝑝 = 𝑜))
2726ex 415 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑝 = 𝑜)))
2827anass1rs 653 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ 𝑝𝐴) → (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑝 = 𝑜)))
2928impr 457 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑜𝑦𝑝 = 𝑜))
3029an32s 650 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑜𝑦𝑝 = 𝑜))
31 eqeq1 2825 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ (𝐹𝑝) = (𝐹𝑜)))
32 dffn3 6525 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
33 fvineqsnf1 34694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴1-1→ran 𝐹)
3432, 33sylanb 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴1-1→ran 𝐹)
35 dff13 7013 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐴1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3634, 35sylib 220 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3736simprd 498 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))
38 rsp 3205 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜) → (𝑝𝐴 → ∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → ∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
40 rsp 3205 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜) → (𝑜𝐴 → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
4139, 40syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑜𝐴 → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))))
4241imp32 421 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))
43 fveq2 6670 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑜 → (𝐹𝑝) = (𝐹𝑜))
4442, 43impbid1 227 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → ((𝐹𝑝) = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4531, 44sylan9bbr 513 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) ∧ 𝑦 = (𝐹𝑝)) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4645ex 415 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜)))
4746anass1rs 653 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ 𝑝𝐴) → (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜)))
4847impr 457 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4948an32s 650 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
5030, 49bitr4d 284 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑜𝑦𝑦 = (𝐹𝑜)))
5150ex 415 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜))))
5251ralrimiv 3181 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)))
5352exp32 423 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑦 = (𝐹𝑝) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)))))
549, 10, 53rexlimd 3317 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (∃𝑝𝐴 𝑦 = (𝐹𝑝) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))))
556, 54sylbid 242 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))))
56 rsp 3205 . . . . . . 7 (∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)) → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜))))
5755, 56syl6 35 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜)))))
5857com23 86 . . . . 5 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → (𝑦 ∈ ran 𝐹 → (𝑜𝑦𝑦 = (𝐹𝑜)))))
5958ralrimdv 3188 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → ∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜))))
60 reu6i 3719 . . . . 5 (((𝐹𝑜) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜))) → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
6160ex 415 . . . 4 ((𝐹𝑜) ∈ ran 𝐹 → (∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜)) → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
623, 59, 61syl6c 70 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
6362ralrimiv 3181 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑜𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
64 nfv 1915 . . . 4 𝑥 𝑞 = 𝑜
65 nfv 1915 . . . 4 𝑦 𝑞 = 𝑜
66 nfvd 1916 . . . 4 (𝑞 = 𝑜 → Ⅎ𝑦 𝑞𝑥)
67 nfvd 1916 . . . 4 (𝑞 = 𝑜 → Ⅎ𝑥 𝑜𝑦)
68 eleq12 2902 . . . . 5 ((𝑞 = 𝑜𝑥 = 𝑦) → (𝑞𝑥𝑜𝑦))
6968ex 415 . . . 4 (𝑞 = 𝑜 → (𝑥 = 𝑦 → (𝑞𝑥𝑜𝑦)))
7064, 65, 66, 67, 69cbvreud 34657 . . 3 (𝑞 = 𝑜 → (∃!𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
7170cbvralvw 3449 . 2 (∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∀𝑜𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
7263, 71sylibr 236 1 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  cin 3935  {csn 4567  ran crn 5556   Fn wfn 6350  wf 6351  1-1wf1 6352  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fv 6363
This theorem is referenced by:  fvineqsneq  34696
  Copyright terms: Public domain W3C validator