Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvineqsneu Structured version   Visualization version   GIF version

Theorem fvineqsneu 36280
Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021.)
Assertion
Ref Expression
fvineqsneu ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ βˆ€π‘ž ∈ 𝐴 βˆƒ!π‘₯ ∈ ran 𝐹 π‘ž ∈ π‘₯)
Distinct variable groups:   𝐴,π‘ž,π‘₯   𝐹,π‘ž,π‘₯   𝐴,𝑝   𝐹,𝑝

Proof of Theorem fvineqsneu
Dummy variables π‘œ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnfvelrn 7079 . . . . . 6 ((𝐹 Fn 𝐴 ∧ π‘œ ∈ 𝐴) β†’ (πΉβ€˜π‘œ) ∈ ran 𝐹)
21ex 413 . . . . 5 (𝐹 Fn 𝐴 β†’ (π‘œ ∈ 𝐴 β†’ (πΉβ€˜π‘œ) ∈ ran 𝐹))
32adantr 481 . . . 4 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (π‘œ ∈ 𝐴 β†’ (πΉβ€˜π‘œ) ∈ ran 𝐹))
4 fnrnfv 6948 . . . . . . . . . 10 (𝐹 Fn 𝐴 β†’ ran 𝐹 = {𝑦 ∣ βˆƒπ‘ ∈ 𝐴 𝑦 = (πΉβ€˜π‘)})
54eqabrd 2876 . . . . . . . . 9 (𝐹 Fn 𝐴 β†’ (𝑦 ∈ ran 𝐹 ↔ βˆƒπ‘ ∈ 𝐴 𝑦 = (πΉβ€˜π‘)))
65adantr 481 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑦 ∈ ran 𝐹 ↔ βˆƒπ‘ ∈ 𝐴 𝑦 = (πΉβ€˜π‘)))
7 nfv 1917 . . . . . . . . . 10 Ⅎ𝑝 𝐹 Fn 𝐴
8 nfra1 3281 . . . . . . . . . 10 β„²π‘βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}
97, 8nfan 1902 . . . . . . . . 9 Ⅎ𝑝(𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝})
10 nfv 1917 . . . . . . . . 9 β„²π‘βˆ€π‘œ ∈ 𝐴 (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))
11 eleq2 2822 . . . . . . . . . . . . . . . . . 18 (𝑦 = (πΉβ€˜π‘) β†’ (π‘œ ∈ 𝑦 ↔ π‘œ ∈ (πΉβ€˜π‘)))
12 elin 3963 . . . . . . . . . . . . . . . . . . . . 21 (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ (π‘œ ∈ (πΉβ€˜π‘) ∧ π‘œ ∈ 𝐴))
1312rbaib 539 . . . . . . . . . . . . . . . . . . . 20 (π‘œ ∈ 𝐴 β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ π‘œ ∈ (πΉβ€˜π‘)))
1413ad2antll 727 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ π‘œ ∈ (πΉβ€˜π‘)))
15 rsp 3244 . . . . . . . . . . . . . . . . . . . . . . 23 (βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝} β†’ (𝑝 ∈ 𝐴 β†’ ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}))
16 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πΉβ€˜π‘) ∩ 𝐴) = {𝑝} β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ π‘œ ∈ {𝑝}))
17 velsn 4643 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘œ ∈ {𝑝} ↔ π‘œ = 𝑝)
18 equcom 2021 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘œ = 𝑝 ↔ 𝑝 = π‘œ)
1917, 18bitri 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘œ ∈ {𝑝} ↔ 𝑝 = π‘œ)
2016, 19bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . 23 (((πΉβ€˜π‘) ∩ 𝐴) = {𝑝} β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ 𝑝 = π‘œ))
2115, 20syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝} β†’ (𝑝 ∈ 𝐴 β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ 𝑝 = π‘œ)))
2221adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑝 ∈ 𝐴 β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ 𝑝 = π‘œ)))
2322adantrd 492 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ ((𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴) β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ 𝑝 = π‘œ)))
2423imp 407 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ (π‘œ ∈ ((πΉβ€˜π‘) ∩ 𝐴) ↔ 𝑝 = π‘œ))
2514, 24bitr3d 280 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ (π‘œ ∈ (πΉβ€˜π‘) ↔ 𝑝 = π‘œ))
2611, 25sylan9bbr 511 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) ∧ 𝑦 = (πΉβ€˜π‘)) β†’ (π‘œ ∈ 𝑦 ↔ 𝑝 = π‘œ))
2726ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ (𝑦 = (πΉβ€˜π‘) β†’ (π‘œ ∈ 𝑦 ↔ 𝑝 = π‘œ)))
2827anass1rs 653 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ π‘œ ∈ 𝐴) ∧ 𝑝 ∈ 𝐴) β†’ (𝑦 = (πΉβ€˜π‘) β†’ (π‘œ ∈ 𝑦 ↔ 𝑝 = π‘œ)))
2928impr 455 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ π‘œ ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) β†’ (π‘œ ∈ 𝑦 ↔ 𝑝 = π‘œ))
3029an32s 650 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) ∧ π‘œ ∈ 𝐴) β†’ (π‘œ ∈ 𝑦 ↔ 𝑝 = π‘œ))
31 eqeq1 2736 . . . . . . . . . . . . . . . . . 18 (𝑦 = (πΉβ€˜π‘) β†’ (𝑦 = (πΉβ€˜π‘œ) ↔ (πΉβ€˜π‘) = (πΉβ€˜π‘œ)))
32 dffn3 6727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟢ran 𝐹)
33 fvineqsnf1 36279 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹:𝐴⟢ran 𝐹 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ 𝐹:𝐴–1-1β†’ran 𝐹)
3432, 33sylanb 581 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ 𝐹:𝐴–1-1β†’ran 𝐹)
35 dff13 7250 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐴–1-1β†’ran 𝐹 ↔ (𝐹:𝐴⟢ran 𝐹 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ)))
3634, 35sylib 217 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝐹:𝐴⟢ran 𝐹 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ)))
3736simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ βˆ€π‘ ∈ 𝐴 βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ))
38 rsp 3244 . . . . . . . . . . . . . . . . . . . . . 22 (βˆ€π‘ ∈ 𝐴 βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ) β†’ (𝑝 ∈ 𝐴 β†’ βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ)))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑝 ∈ 𝐴 β†’ βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ)))
40 rsp 3244 . . . . . . . . . . . . . . . . . . . . 21 (βˆ€π‘œ ∈ 𝐴 ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ) β†’ (π‘œ ∈ 𝐴 β†’ ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ)))
4139, 40syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑝 ∈ 𝐴 β†’ (π‘œ ∈ 𝐴 β†’ ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ))))
4241imp32 419 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) β†’ 𝑝 = π‘œ))
43 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑝 = π‘œ β†’ (πΉβ€˜π‘) = (πΉβ€˜π‘œ))
4442, 43impbid1 224 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ ((πΉβ€˜π‘) = (πΉβ€˜π‘œ) ↔ 𝑝 = π‘œ))
4531, 44sylan9bbr 511 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) ∧ 𝑦 = (πΉβ€˜π‘)) β†’ (𝑦 = (πΉβ€˜π‘œ) ↔ 𝑝 = π‘œ))
4645ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ π‘œ ∈ 𝐴)) β†’ (𝑦 = (πΉβ€˜π‘) β†’ (𝑦 = (πΉβ€˜π‘œ) ↔ 𝑝 = π‘œ)))
4746anass1rs 653 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ π‘œ ∈ 𝐴) ∧ 𝑝 ∈ 𝐴) β†’ (𝑦 = (πΉβ€˜π‘) β†’ (𝑦 = (πΉβ€˜π‘œ) ↔ 𝑝 = π‘œ)))
4847impr 455 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ π‘œ ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) β†’ (𝑦 = (πΉβ€˜π‘œ) ↔ 𝑝 = π‘œ))
4948an32s 650 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) ∧ π‘œ ∈ 𝐴) β†’ (𝑦 = (πΉβ€˜π‘œ) ↔ 𝑝 = π‘œ))
5030, 49bitr4d 281 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) ∧ π‘œ ∈ 𝐴) β†’ (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)))
5150ex 413 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) β†’ (π‘œ ∈ 𝐴 β†’ (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))))
5251ralrimiv 3145 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (πΉβ€˜π‘))) β†’ βˆ€π‘œ ∈ 𝐴 (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)))
5352exp32 421 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑝 ∈ 𝐴 β†’ (𝑦 = (πΉβ€˜π‘) β†’ βˆ€π‘œ ∈ 𝐴 (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)))))
549, 10, 53rexlimd 3263 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (βˆƒπ‘ ∈ 𝐴 𝑦 = (πΉβ€˜π‘) β†’ βˆ€π‘œ ∈ 𝐴 (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))))
556, 54sylbid 239 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑦 ∈ ran 𝐹 β†’ βˆ€π‘œ ∈ 𝐴 (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))))
56 rsp 3244 . . . . . . 7 (βˆ€π‘œ ∈ 𝐴 (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)) β†’ (π‘œ ∈ 𝐴 β†’ (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))))
5755, 56syl6 35 . . . . . 6 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (𝑦 ∈ ran 𝐹 β†’ (π‘œ ∈ 𝐴 β†’ (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)))))
5857com23 86 . . . . 5 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (π‘œ ∈ 𝐴 β†’ (𝑦 ∈ ran 𝐹 β†’ (π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)))))
5958ralrimdv 3152 . . . 4 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (π‘œ ∈ 𝐴 β†’ βˆ€π‘¦ ∈ ran 𝐹(π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))))
60 reu6i 3723 . . . . 5 (((πΉβ€˜π‘œ) ∈ ran 𝐹 ∧ βˆ€π‘¦ ∈ ran 𝐹(π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ))) β†’ βˆƒ!𝑦 ∈ ran 𝐹 π‘œ ∈ 𝑦)
6160ex 413 . . . 4 ((πΉβ€˜π‘œ) ∈ ran 𝐹 β†’ (βˆ€π‘¦ ∈ ran 𝐹(π‘œ ∈ 𝑦 ↔ 𝑦 = (πΉβ€˜π‘œ)) β†’ βˆƒ!𝑦 ∈ ran 𝐹 π‘œ ∈ 𝑦))
623, 59, 61syl6c 70 . . 3 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ (π‘œ ∈ 𝐴 β†’ βˆƒ!𝑦 ∈ ran 𝐹 π‘œ ∈ 𝑦))
6362ralrimiv 3145 . 2 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ βˆ€π‘œ ∈ 𝐴 βˆƒ!𝑦 ∈ ran 𝐹 π‘œ ∈ 𝑦)
64 nfv 1917 . . . 4 β„²π‘₯ π‘ž = π‘œ
65 nfv 1917 . . . 4 Ⅎ𝑦 π‘ž = π‘œ
66 nfvd 1918 . . . 4 (π‘ž = π‘œ β†’ Ⅎ𝑦 π‘ž ∈ π‘₯)
67 nfvd 1918 . . . 4 (π‘ž = π‘œ β†’ β„²π‘₯ π‘œ ∈ 𝑦)
68 eleq12 2823 . . . . 5 ((π‘ž = π‘œ ∧ π‘₯ = 𝑦) β†’ (π‘ž ∈ π‘₯ ↔ π‘œ ∈ 𝑦))
6968ex 413 . . . 4 (π‘ž = π‘œ β†’ (π‘₯ = 𝑦 β†’ (π‘ž ∈ π‘₯ ↔ π‘œ ∈ 𝑦)))
7064, 65, 66, 67, 69cbvreud 36242 . . 3 (π‘ž = π‘œ β†’ (βˆƒ!π‘₯ ∈ ran 𝐹 π‘ž ∈ π‘₯ ↔ βˆƒ!𝑦 ∈ ran 𝐹 π‘œ ∈ 𝑦))
7170cbvralvw 3234 . 2 (βˆ€π‘ž ∈ 𝐴 βˆƒ!π‘₯ ∈ ran 𝐹 π‘ž ∈ π‘₯ ↔ βˆ€π‘œ ∈ 𝐴 βˆƒ!𝑦 ∈ ran 𝐹 π‘œ ∈ 𝑦)
7263, 71sylibr 233 1 ((𝐹 Fn 𝐴 ∧ βˆ€π‘ ∈ 𝐴 ((πΉβ€˜π‘) ∩ 𝐴) = {𝑝}) β†’ βˆ€π‘ž ∈ 𝐴 βˆƒ!π‘₯ ∈ ran 𝐹 π‘ž ∈ π‘₯)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  βˆƒ!wreu 3374   ∩ cin 3946  {csn 4627  ran crn 5676   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€˜cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fv 6548
This theorem is referenced by:  fvineqsneq  36281
  Copyright terms: Public domain W3C validator