| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fnfvelrn 7100 | . . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑜 ∈ 𝐴) → (𝐹‘𝑜) ∈ ran 𝐹) | 
| 2 | 1 | ex 412 | . . . . 5
⊢ (𝐹 Fn 𝐴 → (𝑜 ∈ 𝐴 → (𝐹‘𝑜) ∈ ran 𝐹)) | 
| 3 | 2 | adantr 480 | . . . 4
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑜 ∈ 𝐴 → (𝐹‘𝑜) ∈ ran 𝐹)) | 
| 4 |  | fnrnfv 6968 | . . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑝 ∈ 𝐴 𝑦 = (𝐹‘𝑝)}) | 
| 5 | 4 | eqabrd 2884 | . . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝 ∈ 𝐴 𝑦 = (𝐹‘𝑝))) | 
| 6 | 5 | adantr 480 | . . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝 ∈ 𝐴 𝑦 = (𝐹‘𝑝))) | 
| 7 |  | nfv 1914 | . . . . . . . . . 10
⊢
Ⅎ𝑝 𝐹 Fn 𝐴 | 
| 8 |  | nfra1 3284 | . . . . . . . . . 10
⊢
Ⅎ𝑝∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} | 
| 9 | 7, 8 | nfan 1899 | . . . . . . . . 9
⊢
Ⅎ𝑝(𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) | 
| 10 |  | nfv 1914 | . . . . . . . . 9
⊢
Ⅎ𝑝∀𝑜 ∈ 𝐴 (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)) | 
| 11 |  | eleq2w2 2733 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐹‘𝑝) → (𝑜 ∈ 𝑦 ↔ 𝑜 ∈ (𝐹‘𝑝))) | 
| 12 |  | elin 3967 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ (𝑜 ∈ (𝐹‘𝑝) ∧ 𝑜 ∈ 𝐴)) | 
| 13 | 12 | rbaib 538 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑜 ∈ 𝐴 → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹‘𝑝))) | 
| 14 | 13 | ad2antll 729 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹‘𝑝))) | 
| 15 |  | rsp 3247 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ 𝐴 → ((𝐹‘𝑝) ∩ 𝐴) = {𝑝})) | 
| 16 |  | eleq2w2 2733 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑜 ∈ {𝑝})) | 
| 17 |  | velsn 4642 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑜 ∈ {𝑝} ↔ 𝑜 = 𝑝) | 
| 18 |  | equcom 2017 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑜 = 𝑝 ↔ 𝑝 = 𝑜) | 
| 19 | 17, 18 | bitri 275 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑜 ∈ {𝑝} ↔ 𝑝 = 𝑜) | 
| 20 | 16, 19 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)) | 
| 21 | 15, 20 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ 𝐴 → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))) | 
| 22 | 21 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑝 ∈ 𝐴 → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))) | 
| 23 | 22 | adantrd 491 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → ((𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴) → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))) | 
| 24 | 23 | imp 406 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → (𝑜 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)) | 
| 25 | 14, 24 | bitr3d 281 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → (𝑜 ∈ (𝐹‘𝑝) ↔ 𝑝 = 𝑜)) | 
| 26 | 11, 25 | sylan9bbr 510 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) ∧ 𝑦 = (𝐹‘𝑝)) → (𝑜 ∈ 𝑦 ↔ 𝑝 = 𝑜)) | 
| 27 | 26 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → (𝑦 = (𝐹‘𝑝) → (𝑜 ∈ 𝑦 ↔ 𝑝 = 𝑜))) | 
| 28 | 27 | anass1rs 655 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜 ∈ 𝐴) ∧ 𝑝 ∈ 𝐴) → (𝑦 = (𝐹‘𝑝) → (𝑜 ∈ 𝑦 ↔ 𝑝 = 𝑜))) | 
| 29 | 28 | impr 454 | . . . . . . . . . . . . . 14
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) → (𝑜 ∈ 𝑦 ↔ 𝑝 = 𝑜)) | 
| 30 | 29 | an32s 652 | . . . . . . . . . . . . 13
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) ∧ 𝑜 ∈ 𝐴) → (𝑜 ∈ 𝑦 ↔ 𝑝 = 𝑜)) | 
| 31 |  | eqeq1 2741 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐹‘𝑝) → (𝑦 = (𝐹‘𝑜) ↔ (𝐹‘𝑝) = (𝐹‘𝑜))) | 
| 32 |  | dffn3 6748 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | 
| 33 |  | fvineqsnf1 37411 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴–1-1→ran 𝐹) | 
| 34 | 32, 33 | sylanb 581 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴–1-1→ran 𝐹) | 
| 35 |  | dff13 7275 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝐴–1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝 ∈ 𝐴 ∀𝑜 ∈ 𝐴 ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜))) | 
| 36 | 34, 35 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝 ∈ 𝐴 ∀𝑜 ∈ 𝐴 ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜))) | 
| 37 |  | rsp 3247 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑝 ∈
𝐴 ∀𝑜 ∈ 𝐴 ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜) → (𝑝 ∈ 𝐴 → ∀𝑜 ∈ 𝐴 ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜))) | 
| 38 | 36, 37 | simpl2im 503 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑝 ∈ 𝐴 → ∀𝑜 ∈ 𝐴 ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜))) | 
| 39 |  | rsp 3247 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑜 ∈
𝐴 ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜) → (𝑜 ∈ 𝐴 → ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜))) | 
| 40 | 38, 39 | syl6 35 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑝 ∈ 𝐴 → (𝑜 ∈ 𝐴 → ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜)))) | 
| 41 | 40 | imp32 418 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → ((𝐹‘𝑝) = (𝐹‘𝑜) → 𝑝 = 𝑜)) | 
| 42 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 𝑜 → (𝐹‘𝑝) = (𝐹‘𝑜)) | 
| 43 | 41, 42 | impbid1 225 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → ((𝐹‘𝑝) = (𝐹‘𝑜) ↔ 𝑝 = 𝑜)) | 
| 44 | 31, 43 | sylan9bbr 510 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) ∧ 𝑦 = (𝐹‘𝑝)) → (𝑦 = (𝐹‘𝑜) ↔ 𝑝 = 𝑜)) | 
| 45 | 44 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑜 ∈ 𝐴)) → (𝑦 = (𝐹‘𝑝) → (𝑦 = (𝐹‘𝑜) ↔ 𝑝 = 𝑜))) | 
| 46 | 45 | anass1rs 655 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜 ∈ 𝐴) ∧ 𝑝 ∈ 𝐴) → (𝑦 = (𝐹‘𝑝) → (𝑦 = (𝐹‘𝑜) ↔ 𝑝 = 𝑜))) | 
| 47 | 46 | impr 454 | . . . . . . . . . . . . . 14
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) → (𝑦 = (𝐹‘𝑜) ↔ 𝑝 = 𝑜)) | 
| 48 | 47 | an32s 652 | . . . . . . . . . . . . 13
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) ∧ 𝑜 ∈ 𝐴) → (𝑦 = (𝐹‘𝑜) ↔ 𝑝 = 𝑜)) | 
| 49 | 30, 48 | bitr4d 282 | . . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) ∧ 𝑜 ∈ 𝐴) → (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜))) | 
| 50 | 49 | ex 412 | . . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) → (𝑜 ∈ 𝐴 → (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)))) | 
| 51 | 50 | ralrimiv 3145 | . . . . . . . . . 10
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑝))) → ∀𝑜 ∈ 𝐴 (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜))) | 
| 52 | 51 | exp32 420 | . . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑝 ∈ 𝐴 → (𝑦 = (𝐹‘𝑝) → ∀𝑜 ∈ 𝐴 (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜))))) | 
| 53 | 9, 10, 52 | rexlimd 3266 | . . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (∃𝑝 ∈ 𝐴 𝑦 = (𝐹‘𝑝) → ∀𝑜 ∈ 𝐴 (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)))) | 
| 54 | 6, 53 | sylbid 240 | . . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → ∀𝑜 ∈ 𝐴 (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)))) | 
| 55 |  | rsp 3247 | . . . . . . 7
⊢
(∀𝑜 ∈
𝐴 (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)) → (𝑜 ∈ 𝐴 → (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)))) | 
| 56 | 54, 55 | syl6 35 | . . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → (𝑜 ∈ 𝐴 → (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜))))) | 
| 57 | 56 | com23 86 | . . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑜 ∈ 𝐴 → (𝑦 ∈ ran 𝐹 → (𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜))))) | 
| 58 | 57 | ralrimdv 3152 | . . . 4
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑜 ∈ 𝐴 → ∀𝑦 ∈ ran 𝐹(𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)))) | 
| 59 |  | reu6i 3734 | . . . . 5
⊢ (((𝐹‘𝑜) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹(𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜))) → ∃!𝑦 ∈ ran 𝐹 𝑜 ∈ 𝑦) | 
| 60 | 59 | ex 412 | . . . 4
⊢ ((𝐹‘𝑜) ∈ ran 𝐹 → (∀𝑦 ∈ ran 𝐹(𝑜 ∈ 𝑦 ↔ 𝑦 = (𝐹‘𝑜)) → ∃!𝑦 ∈ ran 𝐹 𝑜 ∈ 𝑦)) | 
| 61 | 3, 58, 60 | syl6c 70 | . . 3
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑜 ∈ 𝐴 → ∃!𝑦 ∈ ran 𝐹 𝑜 ∈ 𝑦)) | 
| 62 | 61 | ralrimiv 3145 | . 2
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑜 ∈ 𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜 ∈ 𝑦) | 
| 63 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑥 𝑞 = 𝑜 | 
| 64 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑦 𝑞 = 𝑜 | 
| 65 |  | nfvd 1915 | . . . 4
⊢ (𝑞 = 𝑜 → Ⅎ𝑦 𝑞 ∈ 𝑥) | 
| 66 |  | nfvd 1915 | . . . 4
⊢ (𝑞 = 𝑜 → Ⅎ𝑥 𝑜 ∈ 𝑦) | 
| 67 |  | elequ12 2126 | . . . . 5
⊢ ((𝑞 = 𝑜 ∧ 𝑥 = 𝑦) → (𝑞 ∈ 𝑥 ↔ 𝑜 ∈ 𝑦)) | 
| 68 | 67 | ex 412 | . . . 4
⊢ (𝑞 = 𝑜 → (𝑥 = 𝑦 → (𝑞 ∈ 𝑥 ↔ 𝑜 ∈ 𝑦))) | 
| 69 | 63, 64, 65, 66, 68 | cbvreud 37374 | . . 3
⊢ (𝑞 = 𝑜 → (∃!𝑥 ∈ ran 𝐹 𝑞 ∈ 𝑥 ↔ ∃!𝑦 ∈ ran 𝐹 𝑜 ∈ 𝑦)) | 
| 70 | 69 | cbvralvw 3237 | . 2
⊢
(∀𝑞 ∈
𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞 ∈ 𝑥 ↔ ∀𝑜 ∈ 𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜 ∈ 𝑦) | 
| 71 | 62, 70 | sylibr 234 | 1
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞 ∈ 𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞 ∈ 𝑥) |