Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvineqsneu Structured version   Visualization version   GIF version

Theorem fvineqsneu 37453
Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021.)
Assertion
Ref Expression
fvineqsneu ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥)
Distinct variable groups:   𝐴,𝑞,𝑥   𝐹,𝑞,𝑥   𝐴,𝑝   𝐹,𝑝

Proof of Theorem fvineqsneu
Dummy variables 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnfvelrn 7013 . . . . . 6 ((𝐹 Fn 𝐴𝑜𝐴) → (𝐹𝑜) ∈ ran 𝐹)
21ex 412 . . . . 5 (𝐹 Fn 𝐴 → (𝑜𝐴 → (𝐹𝑜) ∈ ran 𝐹))
32adantr 480 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → (𝐹𝑜) ∈ ran 𝐹))
4 fnrnfv 6881 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑝𝐴 𝑦 = (𝐹𝑝)})
54eqabrd 2873 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑦 = (𝐹𝑝)))
65adantr 480 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑦 = (𝐹𝑝)))
7 nfv 1915 . . . . . . . . . 10 𝑝 𝐹 Fn 𝐴
8 nfra1 3256 . . . . . . . . . 10 𝑝𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}
97, 8nfan 1900 . . . . . . . . 9 𝑝(𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝})
10 nfv 1915 . . . . . . . . 9 𝑝𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))
11 eleq2w2 2727 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑜 ∈ (𝐹𝑝)))
12 elin 3913 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ (𝑜 ∈ (𝐹𝑝) ∧ 𝑜𝐴))
1312rbaib 538 . . . . . . . . . . . . . . . . . . . 20 (𝑜𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹𝑝)))
1413ad2antll 729 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹𝑝)))
15 rsp 3220 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → ((𝐹𝑝) ∩ 𝐴) = {𝑝}))
16 eleq2w2 2727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ {𝑝}))
17 velsn 4589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑜 ∈ {𝑝} ↔ 𝑜 = 𝑝)
18 equcom 2019 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑜 = 𝑝𝑝 = 𝑜)
1917, 18bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ {𝑝} ↔ 𝑝 = 𝑜)
2016, 19bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))
2115, 20syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2221adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2322adantrd 491 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ((𝑝𝐴𝑜𝐴) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2423imp 406 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))
2514, 24bitr3d 281 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ (𝐹𝑝) ↔ 𝑝 = 𝑜))
2611, 25sylan9bbr 510 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) ∧ 𝑦 = (𝐹𝑝)) → (𝑜𝑦𝑝 = 𝑜))
2726ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑝 = 𝑜)))
2827anass1rs 655 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ 𝑝𝐴) → (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑝 = 𝑜)))
2928impr 454 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑜𝑦𝑝 = 𝑜))
3029an32s 652 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑜𝑦𝑝 = 𝑜))
31 eqeq1 2735 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ (𝐹𝑝) = (𝐹𝑜)))
32 dffn3 6663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
33 fvineqsnf1 37452 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴1-1→ran 𝐹)
3432, 33sylanb 581 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴1-1→ran 𝐹)
35 dff13 7188 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3634, 35sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
37 rsp 3220 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜) → (𝑝𝐴 → ∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3836, 37simpl2im 503 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → ∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
39 rsp 3220 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜) → (𝑜𝐴 → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
4038, 39syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑜𝐴 → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))))
4140imp32 418 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))
42 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑜 → (𝐹𝑝) = (𝐹𝑜))
4341, 42impbid1 225 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → ((𝐹𝑝) = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4431, 43sylan9bbr 510 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) ∧ 𝑦 = (𝐹𝑝)) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4544ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜)))
4645anass1rs 655 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ 𝑝𝐴) → (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜)))
4746impr 454 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4847an32s 652 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4930, 48bitr4d 282 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑜𝑦𝑦 = (𝐹𝑜)))
5049ex 412 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜))))
5150ralrimiv 3123 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)))
5251exp32 420 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑦 = (𝐹𝑝) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)))))
539, 10, 52rexlimd 3239 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (∃𝑝𝐴 𝑦 = (𝐹𝑝) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))))
546, 53sylbid 240 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))))
55 rsp 3220 . . . . . . 7 (∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)) → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜))))
5654, 55syl6 35 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜)))))
5756com23 86 . . . . 5 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → (𝑦 ∈ ran 𝐹 → (𝑜𝑦𝑦 = (𝐹𝑜)))))
5857ralrimdv 3130 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → ∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜))))
59 reu6i 3682 . . . . 5 (((𝐹𝑜) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜))) → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
6059ex 412 . . . 4 ((𝐹𝑜) ∈ ran 𝐹 → (∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜)) → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
613, 58, 60syl6c 70 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
6261ralrimiv 3123 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑜𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
63 nfv 1915 . . . 4 𝑥 𝑞 = 𝑜
64 nfv 1915 . . . 4 𝑦 𝑞 = 𝑜
65 nfvd 1916 . . . 4 (𝑞 = 𝑜 → Ⅎ𝑦 𝑞𝑥)
66 nfvd 1916 . . . 4 (𝑞 = 𝑜 → Ⅎ𝑥 𝑜𝑦)
67 elequ12 2129 . . . . 5 ((𝑞 = 𝑜𝑥 = 𝑦) → (𝑞𝑥𝑜𝑦))
6867ex 412 . . . 4 (𝑞 = 𝑜 → (𝑥 = 𝑦 → (𝑞𝑥𝑜𝑦)))
6963, 64, 65, 66, 68cbvreud 37415 . . 3 (𝑞 = 𝑜 → (∃!𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
7069cbvralvw 3210 . 2 (∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∀𝑜𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
7162, 70sylibr 234 1 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cin 3896  {csn 4573  ran crn 5615   Fn wfn 6476  wf 6477  1-1wf1 6478  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489
This theorem is referenced by:  fvineqsneq  37454
  Copyright terms: Public domain W3C validator