Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvineqsneu Structured version   Visualization version   GIF version

Theorem fvineqsneu 35319
Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021.)
Assertion
Ref Expression
fvineqsneu ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥)
Distinct variable groups:   𝐴,𝑞,𝑥   𝐹,𝑞,𝑥   𝐴,𝑝   𝐹,𝑝

Proof of Theorem fvineqsneu
Dummy variables 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnfvelrn 6901 . . . . . 6 ((𝐹 Fn 𝐴𝑜𝐴) → (𝐹𝑜) ∈ ran 𝐹)
21ex 416 . . . . 5 (𝐹 Fn 𝐴 → (𝑜𝐴 → (𝐹𝑜) ∈ ran 𝐹))
32adantr 484 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → (𝐹𝑜) ∈ ran 𝐹))
4 fnrnfv 6772 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑝𝐴 𝑦 = (𝐹𝑝)})
54abeq2d 2871 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑦 = (𝐹𝑝)))
65adantr 484 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑦 = (𝐹𝑝)))
7 nfv 1922 . . . . . . . . . 10 𝑝 𝐹 Fn 𝐴
8 nfra1 3140 . . . . . . . . . 10 𝑝𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}
97, 8nfan 1907 . . . . . . . . 9 𝑝(𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝})
10 nfv 1922 . . . . . . . . 9 𝑝𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))
11 eleq2 2826 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑜 ∈ (𝐹𝑝)))
12 elin 3882 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ (𝑜 ∈ (𝐹𝑝) ∧ 𝑜𝐴))
1312rbaib 542 . . . . . . . . . . . . . . . . . . . 20 (𝑜𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹𝑝)))
1413ad2antll 729 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ (𝐹𝑝)))
15 rsp 3127 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → ((𝐹𝑝) ∩ 𝐴) = {𝑝}))
16 eleq2 2826 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑜 ∈ {𝑝}))
17 velsn 4557 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑜 ∈ {𝑝} ↔ 𝑜 = 𝑝)
18 equcom 2026 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑜 = 𝑝𝑝 = 𝑜)
1917, 18bitri 278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ {𝑝} ↔ 𝑝 = 𝑜)
2016, 19bitrdi 290 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))
2115, 20syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2221adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2322adantrd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ((𝑝𝐴𝑜𝐴) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜)))
2423imp 410 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 = 𝑜))
2514, 24bitr3d 284 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑜 ∈ (𝐹𝑝) ↔ 𝑝 = 𝑜))
2611, 25sylan9bbr 514 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) ∧ 𝑦 = (𝐹𝑝)) → (𝑜𝑦𝑝 = 𝑜))
2726ex 416 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑝 = 𝑜)))
2827anass1rs 655 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ 𝑝𝐴) → (𝑦 = (𝐹𝑝) → (𝑜𝑦𝑝 = 𝑜)))
2928impr 458 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑜𝑦𝑝 = 𝑜))
3029an32s 652 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑜𝑦𝑝 = 𝑜))
31 eqeq1 2741 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ (𝐹𝑝) = (𝐹𝑜)))
32 dffn3 6558 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
33 fvineqsnf1 35318 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴1-1→ran 𝐹)
3432, 33sylanb 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → 𝐹:𝐴1-1→ran 𝐹)
35 dff13 7067 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐴1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3634, 35sylib 221 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝐹:𝐴⟶ran 𝐹 ∧ ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3736simprd 499 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))
38 rsp 3127 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜) → (𝑝𝐴 → ∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → ∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
40 rsp 3127 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑜𝐴 ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜) → (𝑜𝐴 → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜)))
4139, 40syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑜𝐴 → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))))
4241imp32 422 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → ((𝐹𝑝) = (𝐹𝑜) → 𝑝 = 𝑜))
43 fveq2 6717 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑜 → (𝐹𝑝) = (𝐹𝑜))
4442, 43impbid1 228 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → ((𝐹𝑝) = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4531, 44sylan9bbr 514 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) ∧ 𝑦 = (𝐹𝑝)) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4645ex 416 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑜𝐴)) → (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜)))
4746anass1rs 655 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ 𝑝𝐴) → (𝑦 = (𝐹𝑝) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜)))
4847impr 458 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑜𝐴) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
4948an32s 652 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑦 = (𝐹𝑜) ↔ 𝑝 = 𝑜))
5030, 49bitr4d 285 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) ∧ 𝑜𝐴) → (𝑜𝑦𝑦 = (𝐹𝑜)))
5150ex 416 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜))))
5251ralrimiv 3104 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑝𝐴𝑦 = (𝐹𝑝))) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)))
5352exp32 424 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑝𝐴 → (𝑦 = (𝐹𝑝) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)))))
549, 10, 53rexlimd 3236 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (∃𝑝𝐴 𝑦 = (𝐹𝑝) → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))))
556, 54sylbid 243 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → ∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜))))
56 rsp 3127 . . . . . . 7 (∀𝑜𝐴 (𝑜𝑦𝑦 = (𝐹𝑜)) → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜))))
5755, 56syl6 35 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑦 ∈ ran 𝐹 → (𝑜𝐴 → (𝑜𝑦𝑦 = (𝐹𝑜)))))
5857com23 86 . . . . 5 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → (𝑦 ∈ ran 𝐹 → (𝑜𝑦𝑦 = (𝐹𝑜)))))
5958ralrimdv 3109 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → ∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜))))
60 reu6i 3641 . . . . 5 (((𝐹𝑜) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜))) → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
6160ex 416 . . . 4 ((𝐹𝑜) ∈ ran 𝐹 → (∀𝑦 ∈ ran 𝐹(𝑜𝑦𝑦 = (𝐹𝑜)) → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
623, 59, 61syl6c 70 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑜𝐴 → ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
6362ralrimiv 3104 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑜𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
64 nfv 1922 . . . 4 𝑥 𝑞 = 𝑜
65 nfv 1922 . . . 4 𝑦 𝑞 = 𝑜
66 nfvd 1923 . . . 4 (𝑞 = 𝑜 → Ⅎ𝑦 𝑞𝑥)
67 nfvd 1923 . . . 4 (𝑞 = 𝑜 → Ⅎ𝑥 𝑜𝑦)
68 eleq12 2827 . . . . 5 ((𝑞 = 𝑜𝑥 = 𝑦) → (𝑞𝑥𝑜𝑦))
6968ex 416 . . . 4 (𝑞 = 𝑜 → (𝑥 = 𝑦 → (𝑞𝑥𝑜𝑦)))
7064, 65, 66, 67, 69cbvreud 35281 . . 3 (𝑞 = 𝑜 → (∃!𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∃!𝑦 ∈ ran 𝐹 𝑜𝑦))
7170cbvralvw 3358 . 2 (∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∀𝑜𝐴 ∃!𝑦 ∈ ran 𝐹 𝑜𝑦)
7263, 71sylibr 237 1 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑞𝐴 ∃!𝑥 ∈ ran 𝐹 𝑞𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  ∃!wreu 3063  cin 3865  {csn 4541  ran crn 5552   Fn wfn 6375  wf 6376  1-1wf1 6377  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fv 6388
This theorem is referenced by:  fvineqsneq  35320
  Copyright terms: Public domain W3C validator