MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12 Structured version   Visualization version   GIF version

Theorem eleq12 2834
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2832 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2833 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 509 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-clel 2819
This theorem is referenced by:  rru  3801  trel  5292  epelg  5600  preleqg  9684  preleqALT  9686  oemapval  9752  cantnf  9762  wemapwe  9766  nnsdomel  10059  cldval  23052  isufil  23932  taylthlem2  26434  umgr2v2enb1  29562  issiga  34076  bj-epelg  37034  rdgssun  37344  matunitlindf  37578  wepwsolem  42999  aomclem8  43018  grumnud  44255  nelbr  47189
  Copyright terms: Public domain W3C validator