![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq12 | Structured version Visualization version GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
eleq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2813 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | eleq2 2814 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | sylan9bb 508 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2717 df-clel 2802 |
This theorem is referenced by: rru 3772 trel 5278 epelg 5586 preleqg 9654 preleqALT 9656 oemapval 9722 cantnf 9732 wemapwe 9736 nnsdomel 10029 cldval 23010 isufil 23890 taylthlem2 26394 umgr2v2enb1 29455 issiga 33901 bj-epelg 36723 rdgssun 37033 fvineqsneu 37066 matunitlindf 37267 wepwsolem 42640 aomclem8 42659 grumnud 43897 nelbr 46824 |
Copyright terms: Public domain | W3C validator |