| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq12 | Structured version Visualization version GIF version | ||
| Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| eleq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | eleq2 2817 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: rru 3750 trel 5223 epelg 5539 preleqg 9568 preleqALT 9570 oemapval 9636 cantnf 9646 wemapwe 9650 nnsdomel 9943 cldval 22910 isufil 23790 taylthlem2 26282 umgr2v2enb1 29454 issiga 34102 bj-epelg 37056 rdgssun 37366 matunitlindf 37612 wepwsolem 43031 aomclem8 43050 grumnud 44275 nelbr 47275 |
| Copyright terms: Public domain | W3C validator |