MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12 Structured version   Visualization version   GIF version

Theorem eleq12 2828
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2826 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2827 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 509 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-cleq 2726  df-clel 2813
This theorem is referenced by:  rru  3787  trel  5273  epelg  5589  preleqg  9652  preleqALT  9654  oemapval  9720  cantnf  9730  wemapwe  9734  nnsdomel  10027  cldval  23046  isufil  23926  taylthlem2  26430  umgr2v2enb1  29558  issiga  34092  bj-epelg  37050  rdgssun  37360  matunitlindf  37604  wepwsolem  43030  aomclem8  43049  grumnud  44281  nelbr  47223
  Copyright terms: Public domain W3C validator