MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12 Structured version   Visualization version   GIF version

Theorem eleq12 2828
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2826 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2827 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 510 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by:  rru  3714  trel  5198  epelg  5496  preleqg  9373  preleqALT  9375  oemapval  9441  cantnf  9451  wemapwe  9455  nnsdomel  9748  cldval  22174  isufil  23054  umgr2v2enb1  27893  issiga  32080  bj-epelg  35239  rdgssun  35549  fvineqsneu  35582  matunitlindf  35775  wepwsolem  40867  aomclem8  40886  grumnud  41904  nelbr  44766
  Copyright terms: Public domain W3C validator