MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12 Structured version   Visualization version   GIF version

Theorem eleq12 2826
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2824 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2825 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 510 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-cleq 2728  df-clel 2814
This theorem is referenced by:  rru  3725  trel  5219  epelg  5526  preleqg  9473  preleqALT  9475  oemapval  9541  cantnf  9551  wemapwe  9555  nnsdomel  9848  cldval  22281  isufil  23161  umgr2v2enb1  28183  issiga  32378  bj-epelg  35395  rdgssun  35705  fvineqsneu  35738  matunitlindf  35931  wepwsolem  41181  aomclem8  41200  grumnud  42277  nelbr  45184
  Copyright terms: Public domain W3C validator