MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12 Structured version   Visualization version   GIF version

Theorem eleq12 2828
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2826 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2827 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 509 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  rru  3709  trel  5194  epelg  5487  preleqg  9303  preleqALT  9305  oemapval  9371  cantnf  9381  wemapwe  9385  nnsdomel  9679  cldval  22082  isufil  22962  umgr2v2enb1  27796  issiga  31980  bj-epelg  35166  rdgssun  35476  fvineqsneu  35509  matunitlindf  35702  wepwsolem  40783  aomclem8  40802  grumnud  41793  nelbr  44653
  Copyright terms: Public domain W3C validator