![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq12 | Structured version Visualization version GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
eleq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | eleq2 2827 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: rru 3787 trel 5273 epelg 5589 preleqg 9652 preleqALT 9654 oemapval 9720 cantnf 9730 wemapwe 9734 nnsdomel 10027 cldval 23046 isufil 23926 taylthlem2 26430 umgr2v2enb1 29558 issiga 34092 bj-epelg 37050 rdgssun 37360 matunitlindf 37604 wepwsolem 43030 aomclem8 43049 grumnud 44281 nelbr 47223 |
Copyright terms: Public domain | W3C validator |