| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elexOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of elex 3471 as of 28-May-2025. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elexOLD | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1868 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | dfclel 2805 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 3464 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |