MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elexOLD Structured version   Visualization version   GIF version

Theorem elexOLD 3510
Description: Obsolete version of elex 3509 as of 28-May-2025. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elexOLD (𝐴𝐵𝐴 ∈ V)

Proof of Theorem elexOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 exsimpl 1867 . 2 (∃𝑥(𝑥 = 𝐴𝑥𝐵) → ∃𝑥 𝑥 = 𝐴)
2 dfclel 2820 . 2 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
3 isset 3502 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
41, 2, 33imtr4i 292 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator