MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin3 Structured version   Visualization version   GIF version

Theorem elin3 4219
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin3.x 𝑋 = ((𝐵𝐶) ∩ 𝐷)
Assertion
Ref Expression
elin3 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem elin3
StepHypRef Expression
1 elin 3982 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21anbi1i 624 . 2 ((𝐴 ∈ (𝐵𝐶) ∧ 𝐴𝐷) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐴𝐷))
3 elin3.x . . 3 𝑋 = ((𝐵𝐶) ∩ 𝐷)
43elin2 4216 . 2 (𝐴𝑋 ↔ (𝐴 ∈ (𝐵𝐶) ∧ 𝐴𝐷))
5 df-3an 1089 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐴𝐷))
62, 4, 53bitr4i 303 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  cin 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-in 3973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator