| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin3 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin3.x | ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) |
| Ref | Expression |
|---|---|
| elin3 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3947 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
| 3 | elin3.x | . . 3 ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) | |
| 4 | 3 | elin2 4183 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
| 5 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) | |
| 6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |