MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin2 Structured version   Visualization version   GIF version

Theorem elin2 4131
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2830 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3903 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 274 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894
This theorem is referenced by:  elin3  4134  opelres  5897  elpredgg  6215  fnres  6559  funfvima  7106  fnwelem  7972  ressuppssdif  8001  fz1isolem  14175  isabl  19390  isfld  20000  2idlcpbl  20505  qus1  20506  qusrhm  20508  isidom  20575  lmres  22451  isnvc  23859  cvslvec  24288  cvsclm  24289  iscvs  24290  cvsi  24293  ishl  24526  ply1pid  25344  rplogsum  26675  iscusgr  27785  isphg  29179  ishlo  29249  hhsscms  29640  mayete3i  30090  isogrp  31328  isofld  31501  sltres  33865  bj-elid6  35341  bj-isrvec  35465  caures  35918  iscrngo  36154  fldcrng  36162  isdmn  36212  isolat  37226  srhmsubclem1  45631  srhmsubc  45634  srhmsubcALTV  45652
  Copyright terms: Public domain W3C validator