Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version |
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
3 | elin 3903 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 |
This theorem is referenced by: elin3 4134 opelres 5897 elpredgg 6215 fnres 6559 funfvima 7106 fnwelem 7972 ressuppssdif 8001 fz1isolem 14175 isabl 19390 isfld 20000 2idlcpbl 20505 qus1 20506 qusrhm 20508 isidom 20575 lmres 22451 isnvc 23859 cvslvec 24288 cvsclm 24289 iscvs 24290 cvsi 24293 ishl 24526 ply1pid 25344 rplogsum 26675 iscusgr 27785 isphg 29179 ishlo 29249 hhsscms 29640 mayete3i 30090 isogrp 31328 isofld 31501 sltres 33865 bj-elid6 35341 bj-isrvec 35465 caures 35918 iscrngo 36154 fldcrng 36162 isdmn 36212 isolat 37226 srhmsubclem1 45631 srhmsubc 45634 srhmsubcALTV 45652 |
Copyright terms: Public domain | W3C validator |