| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
| Ref | Expression |
|---|---|
| elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| 3 | elin 3933 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 |
| This theorem is referenced by: elin3 4172 opelres 5959 elpredgg 6290 fnres 6648 funfvima 7207 fnwelem 8113 ressuppssdif 8167 fz1isolem 14433 isabl 19721 srhmsubclem1 20593 srhmsubc 20596 isidom 20641 isfld 20656 2idlelb 21170 qus1 21191 qusrhm 21193 lmres 23194 isnvc 24590 cvslvec 25032 cvsclm 25033 iscvs 25034 cvsi 25037 ishl 25269 ply1pid 26095 rplogsum 27445 sltres 27581 iscusgr 29352 isphg 30753 ishlo 30823 hhsscms 31214 mayete3i 31664 isogrp 33023 isofld 33287 bj-elid6 37165 bj-isrvec 37289 caures 37761 iscrngo 37997 fldcrngo 38005 isdmn 38055 isolat 39212 srhmsubcALTV 48317 |
| Copyright terms: Public domain | W3C validator |