| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
| Ref | Expression |
|---|---|
| elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| 3 | elin 3913 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 |
| This theorem is referenced by: elin3 4153 opelres 5933 elpredgg 6261 fnres 6608 funfvima 7164 fnwelem 8061 ressuppssdif 8115 fz1isolem 14368 isabl 19696 isogrp 20036 srhmsubclem1 20592 srhmsubc 20595 isidom 20640 isfld 20655 isofld 20779 2idlelb 21190 qus1 21211 qusrhm 21213 lmres 23215 isnvc 24610 cvslvec 25052 cvsclm 25053 iscvs 25054 cvsi 25057 ishl 25289 ply1pid 26115 rplogsum 27465 sltres 27601 iscusgr 29396 isphg 30797 ishlo 30867 hhsscms 31258 mayete3i 31708 bj-elid6 37214 bj-isrvec 37338 caures 37810 iscrngo 38046 fldcrngo 38054 isdmn 38104 isolat 39321 srhmsubcALTV 48435 |
| Copyright terms: Public domain | W3C validator |