| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
| Ref | Expression |
|---|---|
| elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| 3 | elin 3927 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 |
| This theorem is referenced by: elin3 4165 opelres 5945 elpredgg 6275 fnres 6627 funfvima 7186 fnwelem 8087 ressuppssdif 8141 fz1isolem 14402 isabl 19690 srhmsubclem1 20562 srhmsubc 20565 isidom 20610 isfld 20625 2idlelb 21139 qus1 21160 qusrhm 21162 lmres 23163 isnvc 24559 cvslvec 25001 cvsclm 25002 iscvs 25003 cvsi 25006 ishl 25238 ply1pid 26064 rplogsum 27414 sltres 27550 iscusgr 29321 isphg 30719 ishlo 30789 hhsscms 31180 mayete3i 31630 isogrp 32989 isofld 33253 bj-elid6 37131 bj-isrvec 37255 caures 37727 iscrngo 37963 fldcrngo 37971 isdmn 38021 isolat 39178 srhmsubcALTV 48286 |
| Copyright terms: Public domain | W3C validator |