Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version |
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
3 | elin 3899 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 |
This theorem is referenced by: elin3 4130 opelres 5886 elpredgg 6204 fnres 6543 funfvima 7088 fnwelem 7943 ressuppssdif 7972 fz1isolem 14103 isabl 19305 isfld 19915 2idlcpbl 20418 qus1 20419 qusrhm 20421 isidom 20488 lmres 22359 isnvc 23765 cvslvec 24194 cvsclm 24195 iscvs 24196 cvsi 24199 ishl 24431 ply1pid 25249 rplogsum 26580 iscusgr 27688 isphg 29080 ishlo 29150 hhsscms 29541 mayete3i 29991 isogrp 31230 isofld 31403 sltres 33792 bj-elid6 35268 bj-isrvec 35392 caures 35845 iscrngo 36081 fldcrng 36089 isdmn 36139 isolat 37153 srhmsubclem1 45519 srhmsubc 45522 srhmsubcALTV 45540 |
Copyright terms: Public domain | W3C validator |