| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
| Ref | Expression |
|---|---|
| elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| 3 | elin 3927 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 |
| This theorem is referenced by: elin3 4165 opelres 5945 elpredgg 6275 fnres 6627 funfvima 7186 fnwelem 8087 ressuppssdif 8141 fz1isolem 14402 isabl 19698 isogrp 20038 srhmsubclem1 20597 srhmsubc 20600 isidom 20645 isfld 20660 isofld 20784 2idlelb 21195 qus1 21216 qusrhm 21218 lmres 23220 isnvc 24616 cvslvec 25058 cvsclm 25059 iscvs 25060 cvsi 25063 ishl 25295 ply1pid 26121 rplogsum 27471 sltres 27607 iscusgr 29398 isphg 30796 ishlo 30866 hhsscms 31257 mayete3i 31707 bj-elid6 37151 bj-isrvec 37275 caures 37747 iscrngo 37983 fldcrngo 37991 isdmn 38041 isolat 39198 srhmsubcALTV 48306 |
| Copyright terms: Public domain | W3C validator |