MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin2 Structured version   Visualization version   GIF version

Theorem elin2 4162
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2820 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3927 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 275 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-in 3918
This theorem is referenced by:  elin3  4165  opelres  5945  elpredgg  6275  fnres  6627  funfvima  7186  fnwelem  8087  ressuppssdif  8141  fz1isolem  14402  isabl  19690  srhmsubclem1  20562  srhmsubc  20565  isidom  20610  isfld  20625  2idlelb  21139  qus1  21160  qusrhm  21162  lmres  23163  isnvc  24559  cvslvec  25001  cvsclm  25002  iscvs  25003  cvsi  25006  ishl  25238  ply1pid  26064  rplogsum  27414  sltres  27550  iscusgr  29321  isphg  30719  ishlo  30789  hhsscms  31180  mayete3i  31630  isogrp  32989  isofld  33253  bj-elid6  37131  bj-isrvec  37255  caures  37727  iscrngo  37963  fldcrngo  37971  isdmn  38021  isolat  39178  srhmsubcALTV  48286
  Copyright terms: Public domain W3C validator