Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version |
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
2 | 1 | eleq2i 2843 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
3 | elin 3876 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | bitri 278 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∩ cin 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 |
This theorem is referenced by: elin3 4107 opelres 5834 elpredim 6143 elpred 6144 elpredg 6145 fnres 6462 funfvima 6990 fnwelem 7836 ressuppssdif 7865 fz1isolem 13884 isabl 18990 isfld 19592 2idlcpbl 20088 qus1 20089 qusrhm 20091 isidom 20158 lmres 22013 isnvc 23410 cvslvec 23839 cvsclm 23840 iscvs 23841 cvsi 23844 ishl 24075 ply1pid 24892 rplogsum 26223 iscusgr 27320 isphg 28712 ishlo 28782 hhsscms 29173 mayete3i 29623 isogrp 30866 isofld 31039 sltres 33462 bj-elid6 34899 bj-isrvec 35022 caures 35512 iscrngo 35748 fldcrng 35756 isdmn 35806 isolat 36822 srhmsubclem1 45113 srhmsubc 45116 srhmsubcALTV 45134 |
Copyright terms: Public domain | W3C validator |