MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin2 Structured version   Visualization version   GIF version

Theorem elin2 4150
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2823 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3913 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 275 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3904
This theorem is referenced by:  elin3  4153  opelres  5933  elpredgg  6261  fnres  6608  funfvima  7164  fnwelem  8061  ressuppssdif  8115  fz1isolem  14368  isabl  19696  isogrp  20036  srhmsubclem1  20592  srhmsubc  20595  isidom  20640  isfld  20655  isofld  20779  2idlelb  21190  qus1  21211  qusrhm  21213  lmres  23215  isnvc  24610  cvslvec  25052  cvsclm  25053  iscvs  25054  cvsi  25057  ishl  25289  ply1pid  26115  rplogsum  27465  sltres  27601  iscusgr  29396  isphg  30797  ishlo  30867  hhsscms  31258  mayete3i  31708  bj-elid6  37214  bj-isrvec  37338  caures  37810  iscrngo  38046  fldcrngo  38054  isdmn  38104  isolat  39321  srhmsubcALTV  48435
  Copyright terms: Public domain W3C validator