| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
| Ref | Expression |
|---|---|
| elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| 3 | elin 3930 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 |
| This theorem is referenced by: elin3 4169 opelres 5956 elpredgg 6287 fnres 6645 funfvima 7204 fnwelem 8110 ressuppssdif 8164 fz1isolem 14426 isabl 19714 srhmsubclem1 20586 srhmsubc 20589 isidom 20634 isfld 20649 2idlelb 21163 qus1 21184 qusrhm 21186 lmres 23187 isnvc 24583 cvslvec 25025 cvsclm 25026 iscvs 25027 cvsi 25030 ishl 25262 ply1pid 26088 rplogsum 27438 sltres 27574 iscusgr 29345 isphg 30746 ishlo 30816 hhsscms 31207 mayete3i 31657 isogrp 33016 isofld 33280 bj-elid6 37158 bj-isrvec 37282 caures 37754 iscrngo 37990 fldcrngo 37998 isdmn 38048 isolat 39205 srhmsubcALTV 48313 |
| Copyright terms: Public domain | W3C validator |