MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin2 Structured version   Visualization version   GIF version

Theorem elin2 4127
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2830 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3899 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 274 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890
This theorem is referenced by:  elin3  4130  opelres  5886  elpredgg  6204  fnres  6543  funfvima  7088  fnwelem  7943  ressuppssdif  7972  fz1isolem  14103  isabl  19305  isfld  19915  2idlcpbl  20418  qus1  20419  qusrhm  20421  isidom  20488  lmres  22359  isnvc  23765  cvslvec  24194  cvsclm  24195  iscvs  24196  cvsi  24199  ishl  24431  ply1pid  25249  rplogsum  26580  iscusgr  27688  isphg  29080  ishlo  29150  hhsscms  29541  mayete3i  29991  isogrp  31230  isofld  31403  sltres  33792  bj-elid6  35268  bj-isrvec  35392  caures  35845  iscrngo  36081  fldcrng  36089  isdmn  36139  isolat  37153  srhmsubclem1  45519  srhmsubc  45522  srhmsubcALTV  45540
  Copyright terms: Public domain W3C validator