![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version |
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
3 | elin 3992 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 |
This theorem is referenced by: elin3 4229 opelres 6015 elpredgg 6345 fnres 6707 funfvima 7267 fnwelem 8172 ressuppssdif 8226 fz1isolem 14510 isabl 19826 srhmsubclem1 20699 srhmsubc 20702 isidom 20747 isfld 20762 2idlelb 21286 qus1 21307 qusrhm 21309 lmres 23329 isnvc 24737 cvslvec 25177 cvsclm 25178 iscvs 25179 cvsi 25182 ishl 25415 ply1pid 26242 rplogsum 27589 sltres 27725 iscusgr 29453 isphg 30849 ishlo 30919 hhsscms 31310 mayete3i 31760 isogrp 33052 isofld 33297 bj-elid6 37136 bj-isrvec 37260 caures 37720 iscrngo 37956 fldcrngo 37964 isdmn 38014 isolat 39168 srhmsubcALTV 48048 |
Copyright terms: Public domain | W3C validator |