![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version |
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
3 | elin 3979 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 |
This theorem is referenced by: elin3 4216 opelres 6006 elpredgg 6336 fnres 6696 funfvima 7250 fnwelem 8155 ressuppssdif 8209 fz1isolem 14497 isabl 19817 srhmsubclem1 20694 srhmsubc 20697 isidom 20742 isfld 20757 2idlelb 21281 qus1 21302 qusrhm 21304 lmres 23324 isnvc 24732 cvslvec 25172 cvsclm 25173 iscvs 25174 cvsi 25177 ishl 25410 ply1pid 26237 rplogsum 27586 sltres 27722 iscusgr 29450 isphg 30846 ishlo 30916 hhsscms 31307 mayete3i 31757 isogrp 33062 isofld 33312 bj-elid6 37153 bj-isrvec 37277 caures 37747 iscrngo 37983 fldcrngo 37991 isdmn 38041 isolat 39194 srhmsubcALTV 48169 |
Copyright terms: Public domain | W3C validator |