| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
| Ref | Expression |
|---|---|
| elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| 3 | elin 3942 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 |
| This theorem is referenced by: elin3 4181 opelres 5972 elpredgg 6303 fnres 6665 funfvima 7222 fnwelem 8130 ressuppssdif 8184 fz1isolem 14479 isabl 19765 srhmsubclem1 20637 srhmsubc 20640 isidom 20685 isfld 20700 2idlelb 21214 qus1 21235 qusrhm 21237 lmres 23238 isnvc 24634 cvslvec 25076 cvsclm 25077 iscvs 25078 cvsi 25081 ishl 25314 ply1pid 26140 rplogsum 27490 sltres 27626 iscusgr 29397 isphg 30798 ishlo 30868 hhsscms 31259 mayete3i 31709 isogrp 33070 isofld 33324 bj-elid6 37188 bj-isrvec 37312 caures 37784 iscrngo 38020 fldcrngo 38028 isdmn 38078 isolat 39230 srhmsubcALTV 48300 |
| Copyright terms: Public domain | W3C validator |