![]() |
Metamath
Proof Explorer Theorem List (p. 42 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30159) |
![]() (30160-31682) |
![]() (31683-47806) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pssn2lp 4101 | Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴) | ||
Theorem | sspsstri 4102 | Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴)) | ||
Theorem | ssnpss 4103 | Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) | ||
Theorem | psstr 4104 | Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | ||
Theorem | sspsstr 4105 | Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | ||
Theorem | psssstr 4106 | Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | ||
Theorem | psstrd 4107 | Proper subclass inclusion is transitive. Deduction form of psstr 4104. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) & ⊢ (𝜑 → 𝐵 ⊊ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | sspsstrd 4108 | Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4105. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊊ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | psssstrd 4109 | Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4106. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | npss 4110 | A class is not a proper subclass of another iff it satisfies a one-directional form of eqss 3997. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (¬ 𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) | ||
Theorem | ssnelpss 4111 | A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | ||
Theorem | ssnelpssd 4112 | Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 4111. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | ||
Theorem | ssexnelpss 4113* | If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝑥 ∉ 𝐴) → 𝐴 ⊊ 𝐵) | ||
Theorem | dfdif3 4114* | Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.) |
⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} | ||
Theorem | difeq1 4115 | Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | ||
Theorem | difeq2 4116 | Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
Theorem | difeq12 4117 | Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
Theorem | difeq1i 4118 | Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) | ||
Theorem | difeq2i 4119 | Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) | ||
Theorem | difeq12i 4120 | Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) | ||
Theorem | difeq1d 4121 | Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | ||
Theorem | difeq2d 4122 | Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
Theorem | difeq12d 4123 | Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
Theorem | difeqri 4124* | Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∖ 𝐵) = 𝐶 | ||
Theorem | nfdif 4125 | Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) | ||
Theorem | eldifi 4126 | Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | eldifn 4127 | Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | elndif 4128 | A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) | ||
Theorem | neldif 4129 | Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) | ||
Theorem | difdif 4130 | Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | ||
Theorem | difss 4131 | Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | ||
Theorem | difssd 4132 | A difference of two classes is contained in the minuend. Deduction form of difss 4131. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | ||
Theorem | difss2 4133 | If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | ||
Theorem | difss2d 4134 | If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4133. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ssdifss 4135 | Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | ddif 4136 | Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | ||
Theorem | ssconb 4137 | Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | ||
Theorem | sscon 4138 | Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
Theorem | ssdif 4139 | Difference law for subsets. (Contributed by NM, 28-May-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | ssdifd 4140 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4139. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | sscond 4141 | If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4138. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
Theorem | ssdifssd 4142 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is also contained in 𝐵. Deduction form of ssdifss 4135. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | ssdif2d 4143 | If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | raldifb 4144 | Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
Theorem | rexdifi 4145 | Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
Theorem | complss 4146 | Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | ||
Theorem | compleq 4147 | Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.) |
⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) | ||
Theorem | elun 4148 | Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | ||
Theorem | elunnel1 4149 | A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
Theorem | elunnel2 4150 | A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | uneqri 4151* | Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∪ 𝐵) = 𝐶 | ||
Theorem | unidm 4152 | Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 ∪ 𝐴) = 𝐴 | ||
Theorem | uncom 4153 | Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | ||
Theorem | equncom 4154 | If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4154 was automatically derived from equncomVD 43615 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | ||
Theorem | equncomi 4155 | Inference form of equncom 4154. equncomi 4155 was automatically derived from equncomiVD 43616 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) | ||
Theorem | uneq1 4156 | Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
Theorem | uneq2 4157 | Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
Theorem | uneq12 4158 | Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
Theorem | uneq1i 4159 | Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) | ||
Theorem | uneq2i 4160 | Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | ||
Theorem | uneq12i 4161 | Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | ||
Theorem | uneq1d 4162 | Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
Theorem | uneq2d 4163 | Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
Theorem | uneq12d 4164 | Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
Theorem | nfun 4165 | Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) | ||
Theorem | unass 4166 | Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | ||
Theorem | un12 4167 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | ||
Theorem | un23 4168 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | ||
Theorem | un4 4169 | A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) | ||
Theorem | unundi 4170 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | ||
Theorem | unundir 4171 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) | ||
Theorem | ssun1 4172 | Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | ||
Theorem | ssun2 4173 | Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | ||
Theorem | ssun3 4174 | Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | ssun4 4175 | Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) | ||
Theorem | elun1 4176 | Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) | ||
Theorem | elun2 4177 | Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) | ||
Theorem | elunant 4178 | A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) | ||
Theorem | unss1 4179 | Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | ssequn1 4180 | A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | ||
Theorem | unss2 4181 | Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) | ||
Theorem | unss12 4182 | Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | ||
Theorem | ssequn2 4183 | A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | ||
Theorem | unss 4184 | The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
Theorem | unssi 4185 | An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 | ||
Theorem | unssd 4186 | A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
Theorem | unssad 4187 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4184. Partial converse of unssd 4186. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | unssbd 4188 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4184. Partial converse of unssd 4186. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | ssun 4189 | A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | rexun 4190 | Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ralunb 4191 | Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ralun 4192 | Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) | ||
Theorem | elini 4193 | Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
Theorem | elind 4194 | Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | ||
Theorem | elinel1 4195 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | elinel2 4196 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | ||
Theorem | elin2 4197 | Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑋 = (𝐵 ∩ 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
Theorem | elin1d 4198 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
Theorem | elin2d 4199 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | elin3 4200 | Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |