![]() |
Metamath
Proof Explorer Theorem List (p. 42 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | psssstrd 4101 | Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4098. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | npss 4102 | A class is not a proper subclass of another iff it satisfies a one-directional form of eqss 3989. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (¬ 𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) | ||
Theorem | ssnelpss 4103 | A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | ||
Theorem | ssnelpssd 4104 | Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 4103. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | ||
Theorem | ssexnelpss 4105* | If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝑥 ∉ 𝐴) → 𝐴 ⊊ 𝐵) | ||
Theorem | dfdif3 4106* | Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.) |
⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} | ||
Theorem | difeq1 4107 | Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | ||
Theorem | difeq2 4108 | Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
Theorem | difeq12 4109 | Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
Theorem | difeq1i 4110 | Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) | ||
Theorem | difeq2i 4111 | Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) | ||
Theorem | difeq12i 4112 | Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) | ||
Theorem | difeq1d 4113 | Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | ||
Theorem | difeq2d 4114 | Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
Theorem | difeq12d 4115 | Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
Theorem | difeqri 4116* | Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∖ 𝐵) = 𝐶 | ||
Theorem | nfdif 4117 | Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) | ||
Theorem | eldifi 4118 | Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | eldifn 4119 | Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | elndif 4120 | A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) | ||
Theorem | neldif 4121 | Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) | ||
Theorem | difdif 4122 | Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | ||
Theorem | difss 4123 | Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | ||
Theorem | difssd 4124 | A difference of two classes is contained in the minuend. Deduction form of difss 4123. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | ||
Theorem | difss2 4125 | If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | ||
Theorem | difss2d 4126 | If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4125. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ssdifss 4127 | Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | ddif 4128 | Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | ||
Theorem | ssconb 4129 | Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | ||
Theorem | sscon 4130 | Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
Theorem | ssdif 4131 | Difference law for subsets. (Contributed by NM, 28-May-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | ssdifd 4132 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4131. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | sscond 4133 | If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4130. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
Theorem | ssdifssd 4134 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is also contained in 𝐵. Deduction form of ssdifss 4127. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | ssdif2d 4135 | If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | raldifb 4136 | Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
Theorem | rexdifi 4137 | Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
Theorem | complss 4138 | Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | ||
Theorem | compleq 4139 | Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.) |
⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) | ||
Theorem | elun 4140 | Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | ||
Theorem | elunnel1 4141 | A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
Theorem | elunnel2 4142 | A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | uneqri 4143* | Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∪ 𝐵) = 𝐶 | ||
Theorem | unidm 4144 | Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 ∪ 𝐴) = 𝐴 | ||
Theorem | uncom 4145 | Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | ||
Theorem | equncom 4146 | If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4146 was automatically derived from equncomVD 44118 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | ||
Theorem | equncomi 4147 | Inference form of equncom 4146. equncomi 4147 was automatically derived from equncomiVD 44119 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) | ||
Theorem | uneq1 4148 | Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
Theorem | uneq2 4149 | Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
Theorem | uneq12 4150 | Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
Theorem | uneq1i 4151 | Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) | ||
Theorem | uneq2i 4152 | Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | ||
Theorem | uneq12i 4153 | Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | ||
Theorem | uneq1d 4154 | Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
Theorem | uneq2d 4155 | Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
Theorem | uneq12d 4156 | Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
Theorem | nfun 4157 | Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) | ||
Theorem | unass 4158 | Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | ||
Theorem | un12 4159 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | ||
Theorem | un23 4160 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | ||
Theorem | un4 4161 | A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) | ||
Theorem | unundi 4162 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | ||
Theorem | unundir 4163 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) | ||
Theorem | ssun1 4164 | Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | ||
Theorem | ssun2 4165 | Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | ||
Theorem | ssun3 4166 | Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | ssun4 4167 | Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) | ||
Theorem | elun1 4168 | Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) | ||
Theorem | elun2 4169 | Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) | ||
Theorem | elunant 4170 | A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) | ||
Theorem | unss1 4171 | Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | ssequn1 4172 | A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | ||
Theorem | unss2 4173 | Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) | ||
Theorem | unss12 4174 | Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | ||
Theorem | ssequn2 4175 | A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | ||
Theorem | unss 4176 | The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
Theorem | unssi 4177 | An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 | ||
Theorem | unssd 4178 | A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
Theorem | unssad 4179 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4176. Partial converse of unssd 4178. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | unssbd 4180 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4176. Partial converse of unssd 4178. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | ssun 4181 | A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | rexun 4182 | Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ralunb 4183 | Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ralun 4184 | Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) | ||
Theorem | elini 4185 | Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
Theorem | elind 4186 | Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | ||
Theorem | elinel1 4187 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | elinel2 4188 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | ||
Theorem | elin2 4189 | Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑋 = (𝐵 ∩ 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
Theorem | elin1d 4190 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
Theorem | elin2d 4191 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | elin3 4192 | Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) | ||
Theorem | incom 4193 | Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (Proof shortened by SN, 12-Dec-2023.) |
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | ||
Theorem | ineqcom 4194 | Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.) |
⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) | ||
Theorem | ineqcomi 4195 | Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4194. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.) |
⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝐵 ∩ 𝐴) = 𝐶 | ||
Theorem | ineqri 4196* | Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∩ 𝐵) = 𝐶 | ||
Theorem | ineq1 4197 | Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
Theorem | ineq2 4198 | Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
Theorem | ineq12 4199 | Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
Theorem | ineq1i 4200 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |