| Metamath
Proof Explorer Theorem List (p. 42 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | difss2 4101 | If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | ||
| Theorem | difss2d 4102 | If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4101. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ssdifss 4103 | Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | ddif 4104 | Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | ||
| Theorem | ssconb 4105 | Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | ||
| Theorem | sscon 4106 | Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
| Theorem | ssdif 4107 | Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
| Theorem | ssdifd 4108 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4107. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
| Theorem | sscond 4109 | If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4106. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
| Theorem | ssdifssd 4110 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is also contained in 𝐵. Deduction form of ssdifss 4103. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | ssdif2d 4111 | If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) | ||
| Theorem | raldifb 4112 | Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
| Theorem | rexdifi 4113 | Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.) |
| ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
| Theorem | complss 4114 | Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | ||
| Theorem | compleq 4115 | Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.) |
| ⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) | ||
| Theorem | elun 4116 | Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | ||
| Theorem | elunnel1 4117 | A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
| Theorem | elunnel2 4118 | A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) | ||
| Theorem | uneqri 4119* | Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
| ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∪ 𝐵) = 𝐶 | ||
| Theorem | unidm 4120 | Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 ∪ 𝐴) = 𝐴 | ||
| Theorem | uncom 4121 | Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | ||
| Theorem | equncom 4122 | If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4122 was automatically derived from equncomVD 44857 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | ||
| Theorem | equncomi 4123 | Inference form of equncom 4122. equncomi 4123 was automatically derived from equncomiVD 44858 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| ⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) | ||
| Theorem | uneq1 4124 | Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
| Theorem | uneq2 4125 | Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
| Theorem | uneq12 4126 | Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
| Theorem | uneq1i 4127 | Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) | ||
| Theorem | uneq2i 4128 | Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | ||
| Theorem | uneq12i 4129 | Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | ||
| Theorem | uneq1d 4130 | Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
| Theorem | uneq2d 4131 | Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
| Theorem | uneq12d 4132 | Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
| Theorem | nfun 4133 | Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) | ||
| Theorem | nfunOLD 4134 | Obsolete version of nfun 4133 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) | ||
| Theorem | unass 4135 | Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | ||
| Theorem | un12 4136 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
| ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | ||
| Theorem | un23 4137 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | ||
| Theorem | un4 4138 | A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) | ||
| Theorem | unundi 4139 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | ||
| Theorem | unundir 4140 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) | ||
| Theorem | ssun1 4141 | Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | ||
| Theorem | ssun2 4142 | Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | ||
| Theorem | ssun3 4143 | Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
| Theorem | ssun4 4144 | Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) | ||
| Theorem | elun1 4145 | Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) | ||
| Theorem | elun2 4146 | Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) | ||
| Theorem | elunant 4147 | A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
| ⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) | ||
| Theorem | unss1 4148 | Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | ||
| Theorem | ssequn1 4149 | A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | ||
| Theorem | unss2 4150 | Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) | ||
| Theorem | unss12 4151 | Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | ||
| Theorem | ssequn2 4152 | A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | ||
| Theorem | unss 4153 | The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
| Theorem | unssi 4154 | An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 | ||
| Theorem | unssd 4155 | A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
| Theorem | unssad 4156 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4153. Partial converse of unssd 4155. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | unssbd 4157 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4153. Partial converse of unssd 4155. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
| Theorem | ssun 4158 | A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
| Theorem | rexun 4159 | Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | ralunb 4160 | Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | ralun 4161 | Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) | ||
| Theorem | elini 4162 | Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
| Theorem | elind 4163 | Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | ||
| Theorem | elinel1 4164 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵) | ||
| Theorem | elinel2 4165 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | ||
| Theorem | elin2 4166 | Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑋 = (𝐵 ∩ 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
| Theorem | elin1d 4167 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
| Theorem | elin2d 4168 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | elin3 4169 | Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) | ||
| Theorem | nel1nelin 4170 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | ||
| Theorem | nel2nelin 4171 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | ||
| Theorem | incom 4172 | Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (Proof shortened by SN, 12-Dec-2023.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | ||
| Theorem | ineqcom 4173 | Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.) |
| ⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) | ||
| Theorem | ineqcomi 4174 | Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4173. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.) |
| ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝐵 ∩ 𝐴) = 𝐶 | ||
| Theorem | ineqri 4175* | Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∩ 𝐵) = 𝐶 | ||
| Theorem | ineq1 4176 | Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
| Theorem | ineq2 4177 | Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
| Theorem | ineq12 4178 | Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
| Theorem | ineq1i 4179 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) | ||
| Theorem | ineq2i 4180 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) | ||
| Theorem | ineq12i 4181 | Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) | ||
| Theorem | ineq1d 4182 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
| Theorem | ineq2d 4183 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
| Theorem | ineq12d 4184 | Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
| Theorem | ineqan12d 4185 | Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
| Theorem | sseqin2 4186 | A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | ||
| Theorem | nfin 4187 | Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
| Theorem | nfinOLD 4188 | Obsolete version of nfin 4187 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
| Theorem | rabbi2dva 4189* | Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | inidm 4190 | Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ∩ 𝐴) = 𝐴 | ||
| Theorem | inass 4191 | Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | ||
| Theorem | in12 4192 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
| ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | ||
| Theorem | in32 4193 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | ||
| Theorem | in13 4194 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
| ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) | ||
| Theorem | in31 4195 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐵) ∩ 𝐴) | ||
| Theorem | inrot 4196 | Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) | ||
| Theorem | in4 4197 | Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) | ||
| Theorem | inindi 4198 | Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
| ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | ||
| Theorem | inindir 4199 | Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | ||
| Theorem | inss1 4200 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |