| Metamath
Proof Explorer Theorem List (p. 42 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | difeq2d 4101 | Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
| Theorem | difeq12d 4102 | Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
| Theorem | difeqri 4103* | Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∖ 𝐵) = 𝐶 | ||
| Theorem | nfdif 4104 | Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) | ||
| Theorem | nfdifOLD 4105 | Obsolete version of nfdif 4104 as of 14-May-2025. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) | ||
| Theorem | eldifi 4106 | Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) | ||
| Theorem | eldifn 4107 | Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | elndif 4108 | A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) | ||
| Theorem | neldif 4109 | Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) | ||
| Theorem | difdif 4110 | Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
| ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | ||
| Theorem | difss 4111 | Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | ||
| Theorem | difssd 4112 | A difference of two classes is contained in the minuend. Deduction form of difss 4111. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | ||
| Theorem | difss2 4113 | If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | ||
| Theorem | difss2d 4114 | If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4113. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ssdifss 4115 | Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | ddif 4116 | Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | ||
| Theorem | ssconb 4117 | Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | ||
| Theorem | sscon 4118 | Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
| Theorem | ssdif 4119 | Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
| Theorem | ssdifd 4120 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4119. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
| Theorem | sscond 4121 | If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4118. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
| Theorem | ssdifssd 4122 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is also contained in 𝐵. Deduction form of ssdifss 4115. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | ssdif2d 4123 | If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) | ||
| Theorem | raldifb 4124 | Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
| Theorem | rexdifi 4125 | Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.) |
| ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
| Theorem | complss 4126 | Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | ||
| Theorem | compleq 4127 | Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.) |
| ⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) | ||
| Theorem | elun 4128 | Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | ||
| Theorem | elunnel1 4129 | A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
| Theorem | elunnel2 4130 | A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) | ||
| Theorem | uneqri 4131* | Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
| ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∪ 𝐵) = 𝐶 | ||
| Theorem | unidm 4132 | Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 ∪ 𝐴) = 𝐴 | ||
| Theorem | uncom 4133 | Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | ||
| Theorem | equncom 4134 | If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4134 was automatically derived from equncomVD 44840 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | ||
| Theorem | equncomi 4135 | Inference form of equncom 4134. equncomi 4135 was automatically derived from equncomiVD 44841 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
| ⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) | ||
| Theorem | uneq1 4136 | Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
| Theorem | uneq2 4137 | Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
| Theorem | uneq12 4138 | Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
| Theorem | uneq1i 4139 | Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) | ||
| Theorem | uneq2i 4140 | Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | ||
| Theorem | uneq12i 4141 | Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | ||
| Theorem | uneq1d 4142 | Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
| Theorem | uneq2d 4143 | Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
| Theorem | uneq12d 4144 | Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
| Theorem | nfun 4145 | Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) | ||
| Theorem | nfunOLD 4146 | Obsolete version of nfun 4145 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) | ||
| Theorem | unass 4147 | Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | ||
| Theorem | un12 4148 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
| ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | ||
| Theorem | un23 4149 | A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | ||
| Theorem | un4 4150 | A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) | ||
| Theorem | unundi 4151 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | ||
| Theorem | unundir 4152 | Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) | ||
| Theorem | ssun1 4153 | Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | ||
| Theorem | ssun2 4154 | Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | ||
| Theorem | ssun3 4155 | Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
| Theorem | ssun4 4156 | Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) | ||
| Theorem | elun1 4157 | Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) | ||
| Theorem | elun2 4158 | Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) | ||
| Theorem | elunant 4159 | A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
| ⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) | ||
| Theorem | unss1 4160 | Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | ||
| Theorem | ssequn1 4161 | A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | ||
| Theorem | unss2 4162 | Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) | ||
| Theorem | unss12 4163 | Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | ||
| Theorem | ssequn2 4164 | A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | ||
| Theorem | unss 4165 | The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
| Theorem | unssi 4166 | An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 | ||
| Theorem | unssd 4167 | A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
| Theorem | unssad 4168 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4165. Partial converse of unssd 4167. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | unssbd 4169 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4165. Partial converse of unssd 4167. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
| Theorem | ssun 4170 | A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
| Theorem | rexun 4171 | Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | ralunb 4172 | Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | ralun 4173 | Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) | ||
| Theorem | elini 4174 | Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
| Theorem | elind 4175 | Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | ||
| Theorem | elinel1 4176 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵) | ||
| Theorem | elinel2 4177 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | ||
| Theorem | elin2 4178 | Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑋 = (𝐵 ∩ 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
| Theorem | elin1d 4179 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
| Theorem | elin2d 4180 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | elin3 4181 | Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) | ||
| Theorem | nel1nelin 4182 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | ||
| Theorem | nel2nelin 4183 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | ||
| Theorem | incom 4184 | Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (Proof shortened by SN, 12-Dec-2023.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | ||
| Theorem | ineqcom 4185 | Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.) |
| ⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) | ||
| Theorem | ineqcomi 4186 | Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4185. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.) |
| ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝐵 ∩ 𝐴) = 𝐶 | ||
| Theorem | ineqri 4187* | Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∩ 𝐵) = 𝐶 | ||
| Theorem | ineq1 4188 | Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
| Theorem | ineq2 4189 | Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
| Theorem | ineq12 4190 | Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
| Theorem | ineq1i 4191 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) | ||
| Theorem | ineq2i 4192 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) | ||
| Theorem | ineq12i 4193 | Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) | ||
| Theorem | ineq1d 4194 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
| Theorem | ineq2d 4195 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
| Theorem | ineq12d 4196 | Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
| Theorem | ineqan12d 4197 | Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
| Theorem | sseqin2 4198 | A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | ||
| Theorem | nfin 4199 | Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
| Theorem | nfinOLD 4200 | Obsolete version of nfin 4199 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |