| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version | ||
| Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4982. Theorem uniiun 5007 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7183 and funiunfv 7184 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciun 4941 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrex 3053 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2707 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliun 4945 iuneq12df 4968 iuneq12d 4971 nfiun 4973 nfiung 4975 nfiu1OLD 4978 dfiun2g 4980 dfiunv2 4984 cbviun 4985 cbviung 4987 cbviunv 4989 iunssf 4993 iunss 4994 uniiun 5007 iunid 5009 iunsn 5015 iunopab 5502 opeliunxp 5686 opeliun2xp 5687 reliun 5759 fnasrn 7079 abrexex2g 7899 marypha2lem4 9328 cshwsiun 17011 cbviunf 32499 iuneq12daf 32500 iunrdx 32507 iunrnmptss 32509 bnj956 34749 bnj1143 34763 bnj1146 34764 bnj1400 34808 bnj882 34899 bnj18eq1 34900 bnj893 34901 bnj1398 35007 iuneq12i 36179 cbviunvw2 36216 cbviundavw 36246 cbviundavw2 36270 ralssiun 37391 volsupnfl 37655 iuneq1i 45073 nfiund 49669 nfiundg 49670 |
| Copyright terms: Public domain | W3C validator |