![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version |
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 5037. Theorem uniiun 5062 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7266 and funiunfv 7267 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciun 4995 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1535 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2105 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wrex 3067 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2711 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1536 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliun 4999 iuneq12df 5022 iuneq12d 5025 nfiun 5027 nfiung 5029 nfiu1OLD 5032 dfiun2g 5034 dfiunv2 5039 cbviun 5040 cbviung 5042 cbviunv 5044 iunssf 5048 iunss 5049 uniiun 5062 iunid 5064 iunsn 5070 iunopab 5568 iunopabOLD 5569 opeliunxp 5755 reliun 5828 fnasrn 7164 abrexex2g 7987 marypha2lem4 9475 cshwsiun 17133 cbviunf 32575 iuneq12daf 32576 iunrdx 32583 iunrnmptss 32585 bnj956 34768 bnj1143 34782 bnj1146 34783 bnj1400 34827 bnj882 34918 bnj18eq1 34919 bnj893 34920 bnj1398 35026 iuneq12i 36176 cbviunvw2 36214 cbviundavw 36244 cbviundavw2 36268 ralssiun 37389 volsupnfl 37651 iuneq1i 45024 opeliun2xp 48177 nfiund 48904 nfiundg 48905 |
Copyright terms: Public domain | W3C validator |