Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version |
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4964. Theorem uniiun 4989 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7129 and funiunfv 7130 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciun 4925 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1538 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2107 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wrex 3066 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2716 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1539 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliun 4929 iuneq12df 4951 nfiun 4955 nfiung 4957 nfiu1 4959 dfiun2g 4961 dfiunv2 4966 cbviun 4967 cbviung 4969 iunssf 4975 iunss 4976 uniiun 4989 iunsn 4996 iunopab 5473 iunopabOLD 5474 opeliunxp 5655 reliun 5728 fnasrn 7026 abrexex2g 7816 marypha2lem4 9206 cshwsiun 16810 cbviunf 30904 iuneq12daf 30905 iunrdx 30912 iunrnmptss 30914 bnj956 32765 bnj1143 32779 bnj1146 32780 bnj1400 32824 bnj882 32915 bnj18eq1 32916 bnj893 32917 bnj1398 33023 ralssiun 35587 volsupnfl 35831 ss2iundf 41274 opeliun2xp 45679 nfiund 46391 nfiundg 46392 |
Copyright terms: Public domain | W3C validator |