| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version | ||
| Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 5009. Theorem uniiun 5034 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7238 and funiunfv 7239 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciun 4967 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrex 3060 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2713 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliun 4971 iuneq12df 4994 iuneq12d 4997 nfiun 4999 nfiung 5001 nfiu1OLD 5004 dfiun2g 5006 dfiunv2 5011 cbviun 5012 cbviung 5014 cbviunv 5016 iunssf 5020 iunss 5021 uniiun 5034 iunid 5036 iunsn 5042 iunopab 5534 iunopabOLD 5535 opeliunxp 5721 opeliun2xp 5722 reliun 5795 fnasrn 7134 abrexex2g 7961 marypha2lem4 9448 cshwsiun 17117 cbviunf 32482 iuneq12daf 32483 iunrdx 32490 iunrnmptss 32492 bnj956 34753 bnj1143 34767 bnj1146 34768 bnj1400 34812 bnj882 34903 bnj18eq1 34904 bnj893 34905 bnj1398 35011 iuneq12i 36159 cbviunvw2 36196 cbviundavw 36226 cbviundavw2 36250 ralssiun 37371 volsupnfl 37635 iuneq1i 45057 nfiund 49486 nfiundg 49487 |
| Copyright terms: Public domain | W3C validator |