MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iun Structured version   Visualization version   GIF version

Definition df-iun 4923
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4959. Theorem uniiun 4984 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7102 and funiunfv 7103 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iun 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iun
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciun 4921 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1538 . . . . 5 class 𝑦
76, 3wcel 2108 . . . 4 wff 𝑦𝐵
87, 1, 2wrex 3064 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2715 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
104, 9wceq 1539 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliun  4925  iuneq12df  4947  nfiun  4951  nfiung  4953  nfiu1  4955  dfiunv2  4961  cbviun  4962  cbviung  4964  iunssf  4970  iunss  4971  uniiun  4984  iunsn  4991  iunopab  5465  opeliunxp  5645  reliun  5715  fnasrn  6999  abrexex2g  7780  marypha2lem4  9127  cshwsiun  16729  cbviunf  30796  iuneq12daf  30797  iunrdx  30804  iunrnmptss  30806  bnj956  32656  bnj1143  32670  bnj1146  32671  bnj1400  32715  bnj882  32806  bnj18eq1  32807  bnj893  32808  bnj1398  32914  ralssiun  35505  volsupnfl  35749  ss2iundf  41156  opeliun2xp  45556  nfiund  46266  nfiundg  46267
  Copyright terms: Public domain W3C validator