![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version |
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 5056. Theorem uniiun 5081 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7284 and funiunfv 7285 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciun 5015 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1536 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wrex 3076 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2717 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1537 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliun 5019 iuneq12df 5041 iuneq12d 5044 nfiun 5046 nfiung 5048 nfiu1OLD 5051 dfiun2g 5053 dfiunv2 5058 cbviun 5059 cbviung 5061 cbviunv 5063 iunssf 5067 iunss 5068 uniiun 5081 iunid 5083 iunsn 5089 iunopab 5578 iunopabOLD 5579 opeliunxp 5767 reliun 5840 fnasrn 7179 abrexex2g 8005 marypha2lem4 9507 cshwsiun 17147 cbviunf 32578 iuneq12daf 32579 iunrdx 32586 iunrnmptss 32588 bnj956 34752 bnj1143 34766 bnj1146 34767 bnj1400 34811 bnj882 34902 bnj18eq1 34903 bnj893 34904 bnj1398 35010 iuneq12i 36159 cbviunvw2 36198 cbviundavw 36228 cbviundavw2 36252 ralssiun 37373 volsupnfl 37625 iuneq1i 44987 opeliun2xp 48057 nfiund 48766 nfiundg 48767 |
Copyright terms: Public domain | W3C validator |