Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version |
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4959. Theorem uniiun 4984 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7102 and funiunfv 7103 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciun 4921 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1538 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wrex 3064 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2715 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1539 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliun 4925 iuneq12df 4947 nfiun 4951 nfiung 4953 nfiu1 4955 dfiunv2 4961 cbviun 4962 cbviung 4964 iunssf 4970 iunss 4971 uniiun 4984 iunsn 4991 iunopab 5465 opeliunxp 5645 reliun 5715 fnasrn 6999 abrexex2g 7780 marypha2lem4 9127 cshwsiun 16729 cbviunf 30796 iuneq12daf 30797 iunrdx 30804 iunrnmptss 30806 bnj956 32656 bnj1143 32670 bnj1146 32671 bnj1400 32715 bnj882 32806 bnj18eq1 32807 bnj893 32808 bnj1398 32914 ralssiun 35505 volsupnfl 35749 ss2iundf 41156 opeliun2xp 45556 nfiund 46266 nfiundg 46267 |
Copyright terms: Public domain | W3C validator |