| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version | ||
| Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4980. Theorem uniiun 5005 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7181 and funiunfv 7182 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciun 4939 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1540 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2111 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrex 3056 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2709 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1541 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliun 4943 iuneq12df 4966 iuneq12d 4969 nfiun 4971 nfiung 4973 nfiu1OLD 4976 dfiun2g 4978 dfiunv2 4982 cbviun 4983 cbviung 4985 cbviunv 4987 iunssf 4991 iunss 4992 uniiun 5005 iunid 5007 iunsn 5012 iunopab 5497 opeliunxp 5681 opeliun2xp 5682 reliun 5755 fnasrn 7078 abrexex2g 7896 marypha2lem4 9322 cshwsiun 17011 cbviunf 32535 iuneq12daf 32536 iunrdx 32543 iunrnmptss 32545 bnj956 34788 bnj1143 34802 bnj1146 34803 bnj1400 34847 bnj882 34938 bnj18eq1 34939 bnj893 34940 bnj1398 35046 iuneq12i 36239 cbviunvw2 36276 cbviundavw 36306 cbviundavw2 36330 ralssiun 37451 volsupnfl 37715 iuneq1i 45192 nfiund 49785 nfiundg 49786 |
| Copyright terms: Public domain | W3C validator |