| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version | ||
| Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4997. Theorem uniiun 5022 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7221 and funiunfv 7222 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciun 4955 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrex 3053 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2707 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliun 4959 iuneq12df 4982 iuneq12d 4985 nfiun 4987 nfiung 4989 nfiu1OLD 4992 dfiun2g 4994 dfiunv2 4999 cbviun 5000 cbviung 5002 cbviunv 5004 iunssf 5008 iunss 5009 uniiun 5022 iunid 5024 iunsn 5030 iunopab 5519 iunopabOLD 5520 opeliunxp 5705 opeliun2xp 5706 reliun 5779 fnasrn 7117 abrexex2g 7943 marypha2lem4 9389 cshwsiun 17070 cbviunf 32484 iuneq12daf 32485 iunrdx 32492 iunrnmptss 32494 bnj956 34766 bnj1143 34780 bnj1146 34781 bnj1400 34825 bnj882 34916 bnj18eq1 34917 bnj893 34918 bnj1398 35024 iuneq12i 36183 cbviunvw2 36220 cbviundavw 36250 cbviundavw2 36274 ralssiun 37395 volsupnfl 37659 iuneq1i 45079 nfiund 49660 nfiundg 49661 |
| Copyright terms: Public domain | W3C validator |