MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iun Structured version   Visualization version   GIF version

Definition df-iun 5000
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 5037. Theorem uniiun 5062 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7246 and funiunfv 7247 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iun 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iun
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciun 4998 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1541 . . . . 5 class 𝑦
76, 3wcel 2107 . . . 4 wff 𝑦𝐵
87, 1, 2wrex 3071 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2710 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
104, 9wceq 1542 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliun  5002  iuneq12df  5024  nfiun  5028  nfiung  5030  nfiu1  5032  dfiun2g  5034  dfiunv2  5039  cbviun  5040  cbviung  5042  iunssf  5048  iunss  5049  uniiun  5062  iunid  5064  iunsn  5070  iunopab  5560  iunopabOLD  5561  opeliunxp  5744  reliun  5817  fnasrn  7143  abrexex2g  7951  marypha2lem4  9433  cshwsiun  17033  cbviunf  31787  iuneq12daf  31788  iunrdx  31795  iunrnmptss  31797  bnj956  33787  bnj1143  33801  bnj1146  33802  bnj1400  33846  bnj882  33937  bnj18eq1  33938  bnj893  33939  bnj1398  34045  ralssiun  36288  volsupnfl  36533  opeliun2xp  47008  nfiund  47719  nfiundg  47720
  Copyright terms: Public domain W3C validator