|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnelneq2d | Structured version Visualization version GIF version | ||
| Description: Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| elnelneq2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| elnelneq2d.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | 
| Ref | Expression | 
|---|---|
| elnelneq2d | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnelneq2d.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | elnelneq2d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | 
| 5 | 2, 4 | eqeltrrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐶) | 
| 6 | 1, 5 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 | 
| This theorem is referenced by: mnurndlem1 44305 | 
| Copyright terms: Public domain | W3C validator |