Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnelneq2d Structured version   Visualization version   GIF version

Theorem elnelneq2d 41703
Description: Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
elnelneq2d.1 (𝜑𝐴𝐶)
elnelneq2d.2 (𝜑 → ¬ 𝐵𝐶)
Assertion
Ref Expression
elnelneq2d (𝜑 → ¬ 𝐴 = 𝐵)

Proof of Theorem elnelneq2d
StepHypRef Expression
1 elnelneq2d.2 . 2 (𝜑 → ¬ 𝐵𝐶)
2 simpr 484 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
3 elnelneq2d.1 . . . 4 (𝜑𝐴𝐶)
43adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴𝐶)
52, 4eqeltrrd 2840 . 2 ((𝜑𝐴 = 𝐵) → 𝐵𝐶)
61, 5mtand 812 1 (𝜑 → ¬ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  mnurndlem1  41788
  Copyright terms: Public domain W3C validator