Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnelneqd | Structured version Visualization version GIF version |
Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
elnelneqd.1 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
elnelneqd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
elnelneqd | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnelneqd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | elnelneqd.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | 2 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 ∈ 𝐴) |
4 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
5 | 3, 4 | eleqtrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 ∈ 𝐵) |
6 | 1, 5 | mtand 814 | 1 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-clel 2814 |
This theorem is referenced by: mnuprdlem1 42103 mnuprdlem2 42104 |
Copyright terms: Public domain | W3C validator |