| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnelneqd | Structured version Visualization version GIF version | ||
| Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| elnelneqd.1 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| elnelneqd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elnelneqd | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnelneqd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | elnelneqd.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 ∈ 𝐴) |
| 4 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 5 | 3, 4 | eleqtrd 2842 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 ∈ 𝐵) |
| 6 | 1, 5 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 |
| This theorem is referenced by: mnuprdlem1 44296 mnuprdlem2 44297 |
| Copyright terms: Public domain | W3C validator |