Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrrd | Structured version Visualization version GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eqeltrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeltrrd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eqeltrrd | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqeltrrd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
4 | 2, 3 | eqeltrd 2839 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Copyright terms: Public domain | W3C validator |