|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-spce | Structured version Visualization version GIF version | ||
| Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| rr-spce.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | 
| rr-spce.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| rr-spce | ⊢ (𝜑 → ∃𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rr-spce.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3503 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | 
| 3 | isset 3493 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) | 
| 5 | rr-spce.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝜓)) | 
| 7 | 6 | eximdv 1916 | . 2 ⊢ (𝜑 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜓)) | 
| 8 | 4, 7 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 | 
| This theorem is referenced by: grumnudlem 44309 | 
| Copyright terms: Public domain | W3C validator |