Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-spce Structured version   Visualization version   GIF version

Theorem rr-spce 44166
Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
rr-spce.1 ((𝜑𝑥 = 𝐴) → 𝜓)
rr-spce.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
rr-spce (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem rr-spce
StepHypRef Expression
1 rr-spce.2 . . . 4 (𝜑𝐴𝑉)
21elexd 3512 . . 3 (𝜑𝐴 ∈ V)
3 isset 3502 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
42, 3sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
5 rr-spce.1 . . . 4 ((𝜑𝑥 = 𝐴) → 𝜓)
65ex 412 . . 3 (𝜑 → (𝑥 = 𝐴𝜓))
76eximdv 1916 . 2 (𝜑 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜓))
84, 7mpd 15 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  grumnudlem  44254
  Copyright terms: Public domain W3C validator