| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-spce | Structured version Visualization version GIF version | ||
| Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| Ref | Expression |
|---|---|
| rr-spce.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) |
| rr-spce.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rr-spce | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rr-spce.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3488 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | isset 3478 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 5 | rr-spce.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝜓)) |
| 7 | 6 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜓)) |
| 8 | 4, 7 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: grumnudlem 44276 |
| Copyright terms: Public domain | W3C validator |