Proof of Theorem mnurndlem1
Step | Hyp | Ref
| Expression |
1 | | mnurndlem1.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
2 | 1 | ffnd 6504 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | | mnurndlem1.6 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
4 | | vex 3413 |
. . . . . . . 8
⊢ 𝑖 ∈ V |
5 | 4 | prid1 4658 |
. . . . . . 7
⊢ 𝑖 ∈ {𝑖, {(𝐹‘𝑖), 𝐴}} |
6 | | simpr 488 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝐴 ∧ 𝑣 = {𝑖, {(𝐹‘𝑖), 𝐴}}) → 𝑣 = {𝑖, {(𝐹‘𝑖), 𝐴}}) |
7 | 5, 6 | eleqtrrid 2859 |
. . . . . 6
⊢ ((𝑖 ∈ 𝐴 ∧ 𝑣 = {𝑖, {(𝐹‘𝑖), 𝐴}}) → 𝑖 ∈ 𝑣) |
8 | | eqid 2758 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) = (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) |
9 | | id 22 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐴 → 𝑖 ∈ 𝐴) |
10 | | prex 5305 |
. . . . . . . 8
⊢ {𝑖, {(𝐹‘𝑖), 𝐴}} ∈ V |
11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐴 → {𝑖, {(𝐹‘𝑖), 𝐴}} ∈ V) |
12 | | id 22 |
. . . . . . . . 9
⊢ (𝑎 = 𝑖 → 𝑎 = 𝑖) |
13 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑖 → (𝐹‘𝑎) = (𝐹‘𝑖)) |
14 | 13 | preq1d 4635 |
. . . . . . . . 9
⊢ (𝑎 = 𝑖 → {(𝐹‘𝑎), 𝐴} = {(𝐹‘𝑖), 𝐴}) |
15 | 12, 14 | preq12d 4637 |
. . . . . . . 8
⊢ (𝑎 = 𝑖 → {𝑎, {(𝐹‘𝑎), 𝐴}} = {𝑖, {(𝐹‘𝑖), 𝐴}}) |
16 | 15 | adantl 485 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝐴 ∧ 𝑎 = 𝑖) → {𝑎, {(𝐹‘𝑎), 𝐴}} = {𝑖, {(𝐹‘𝑖), 𝐴}}) |
17 | 8, 9, 11, 16 | rr-elrnmpt3d 41322 |
. . . . . 6
⊢ (𝑖 ∈ 𝐴 → {𝑖, {(𝐹‘𝑖), 𝐴}} ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})) |
18 | 7, 17 | rspcime 3547 |
. . . . 5
⊢ (𝑖 ∈ 𝐴 → ∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣) |
19 | 18 | rgen 3080 |
. . . 4
⊢
∀𝑖 ∈
𝐴 ∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 |
20 | | ralim 3094 |
. . . 4
⊢
(∀𝑖 ∈
𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (∀𝑖 ∈ 𝐴 ∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∀𝑖 ∈ 𝐴 ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
21 | 3, 19, 20 | mpisyl 21 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ 𝐴 ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
22 | | prex 5305 |
. . . . . . . 8
⊢ {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ V |
23 | 22 | rgenw 3082 |
. . . . . . 7
⊢
∀𝑎 ∈
𝐴 {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ V |
24 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑢 = {𝑎, {(𝐹‘𝑎), 𝐴}} → (𝑖 ∈ 𝑢 ↔ 𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}})) |
25 | | unieq 4812 |
. . . . . . . . . 10
⊢ (𝑢 = {𝑎, {(𝐹‘𝑎), 𝐴}} → ∪ 𝑢 = ∪
{𝑎, {(𝐹‘𝑎), 𝐴}}) |
26 | 25 | sseq1d 3925 |
. . . . . . . . 9
⊢ (𝑢 = {𝑎, {(𝐹‘𝑎), 𝐴}} → (∪
𝑢 ⊆ 𝑤 ↔ ∪ {𝑎,
{(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) |
27 | 24, 26 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑢 = {𝑎, {(𝐹‘𝑎), 𝐴}} → ((𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤))) |
28 | 8, 27 | rexrnmptw 6858 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐴 {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ V → (∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑎 ∈ 𝐴 (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤))) |
29 | 23, 28 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑢 ∈ ran
(𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑎 ∈ 𝐴 (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) |
30 | | simplrl 776 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}}) |
31 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) |
32 | | mnurndlem1.4 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ∈ V |
33 | 32 | prid2 4659 |
. . . . . . . . . . . . . 14
⊢ 𝐴 ∈ {(𝐹‘𝑎), 𝐴} |
34 | | elnotel 9119 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ {(𝐹‘𝑎), 𝐴} → ¬ {(𝐹‘𝑎), 𝐴} ∈ 𝐴) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ¬
{(𝐹‘𝑎), 𝐴} ∈ 𝐴 |
36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → ¬ {(𝐹‘𝑎), 𝐴} ∈ 𝐴) |
37 | 31, 36 | elnelneq2d 41317 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → ¬ 𝑖 = {(𝐹‘𝑎), 𝐴}) |
38 | | elpri 4547 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} → (𝑖 = 𝑎 ∨ 𝑖 = {(𝐹‘𝑎), 𝐴})) |
39 | 38 | orcomd 868 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} → (𝑖 = {(𝐹‘𝑎), 𝐴} ∨ 𝑖 = 𝑎)) |
40 | 39 | ord 861 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} → (¬ 𝑖 = {(𝐹‘𝑎), 𝐴} → 𝑖 = 𝑎)) |
41 | 30, 37, 40 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → 𝑖 = 𝑎) |
42 | 41 | fveq2d 6667 |
. . . . . . . . 9
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → (𝐹‘𝑖) = (𝐹‘𝑎)) |
43 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤) |
44 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
45 | | prex 5305 |
. . . . . . . . . . . . 13
⊢ {(𝐹‘𝑎), 𝐴} ∈ V |
46 | 44, 45 | unipr 4819 |
. . . . . . . . . . . 12
⊢ ∪ {𝑎,
{(𝐹‘𝑎), 𝐴}} = (𝑎 ∪ {(𝐹‘𝑎), 𝐴}) |
47 | 46 | sseq1i 3922 |
. . . . . . . . . . 11
⊢ (∪ {𝑎,
{(𝐹‘𝑎), 𝐴}} ⊆ 𝑤 ↔ (𝑎 ∪ {(𝐹‘𝑎), 𝐴}) ⊆ 𝑤) |
48 | | unss 4091 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ⊆ 𝑤 ∧ {(𝐹‘𝑎), 𝐴} ⊆ 𝑤) ↔ (𝑎 ∪ {(𝐹‘𝑎), 𝐴}) ⊆ 𝑤) |
49 | 48 | bicomi 227 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∪ {(𝐹‘𝑎), 𝐴}) ⊆ 𝑤 ↔ (𝑎 ⊆ 𝑤 ∧ {(𝐹‘𝑎), 𝐴} ⊆ 𝑤)) |
50 | 49 | simprbi 500 |
. . . . . . . . . . 11
⊢ ((𝑎 ∪ {(𝐹‘𝑎), 𝐴}) ⊆ 𝑤 → {(𝐹‘𝑎), 𝐴} ⊆ 𝑤) |
51 | 47, 50 | sylbi 220 |
. . . . . . . . . 10
⊢ (∪ {𝑎,
{(𝐹‘𝑎), 𝐴}} ⊆ 𝑤 → {(𝐹‘𝑎), 𝐴} ⊆ 𝑤) |
52 | | fvex 6676 |
. . . . . . . . . . . . 13
⊢ (𝐹‘𝑎) ∈ V |
53 | 52, 32 | prss 4713 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑎) ∈ 𝑤 ∧ 𝐴 ∈ 𝑤) ↔ {(𝐹‘𝑎), 𝐴} ⊆ 𝑤) |
54 | 53 | bicomi 227 |
. . . . . . . . . . 11
⊢ ({(𝐹‘𝑎), 𝐴} ⊆ 𝑤 ↔ ((𝐹‘𝑎) ∈ 𝑤 ∧ 𝐴 ∈ 𝑤)) |
55 | 54 | simplbi 501 |
. . . . . . . . . 10
⊢ ({(𝐹‘𝑎), 𝐴} ⊆ 𝑤 → (𝐹‘𝑎) ∈ 𝑤) |
56 | 43, 51, 55 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → (𝐹‘𝑎) ∈ 𝑤) |
57 | 42, 56 | eqeltrd 2852 |
. . . . . . . 8
⊢ (((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) ∧ 𝑖 ∈ 𝐴) → (𝐹‘𝑖) ∈ 𝑤) |
58 | 57 | ex 416 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐴 ∧ (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤)) → (𝑖 ∈ 𝐴 → (𝐹‘𝑖) ∈ 𝑤)) |
59 | 58 | rexlimiva 3205 |
. . . . . 6
⊢
(∃𝑎 ∈
𝐴 (𝑖 ∈ {𝑎, {(𝐹‘𝑎), 𝐴}} ∧ ∪ {𝑎, {(𝐹‘𝑎), 𝐴}} ⊆ 𝑤) → (𝑖 ∈ 𝐴 → (𝐹‘𝑖) ∈ 𝑤)) |
60 | 29, 59 | sylbi 220 |
. . . . 5
⊢
(∃𝑢 ∈ ran
(𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → (𝑖 ∈ 𝐴 → (𝐹‘𝑖) ∈ 𝑤)) |
61 | 60 | com12 32 |
. . . 4
⊢ (𝑖 ∈ 𝐴 → (∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → (𝐹‘𝑖) ∈ 𝑤)) |
62 | 61 | ralimia 3090 |
. . 3
⊢
(∀𝑖 ∈
𝐴 ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → ∀𝑖 ∈ 𝐴 (𝐹‘𝑖) ∈ 𝑤) |
63 | 21, 62 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝐴 (𝐹‘𝑖) ∈ 𝑤) |
64 | | fnfvrnss 6881 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑖 ∈ 𝐴 (𝐹‘𝑖) ∈ 𝑤) → ran 𝐹 ⊆ 𝑤) |
65 | 2, 63, 64 | syl2anc 587 |
1
⊢ (𝜑 → ran 𝐹 ⊆ 𝑤) |