Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprdlem2 Structured version   Visualization version   GIF version

Theorem mnuprdlem2 41425
Description: Lemma for mnuprd 41428. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
mnuprdlem2.1 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
mnuprdlem2.4 (𝜑𝐵𝑈)
mnuprdlem2.5 (𝜑 → ¬ 𝐴 = ∅)
mnuprdlem2.8 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
Assertion
Ref Expression
mnuprdlem2 (𝜑𝐵𝑤)
Distinct variable groups:   𝑤,𝑖,𝑢   𝑢,𝐹,𝑖
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑖)   𝐴(𝑤,𝑢,𝑖)   𝐵(𝑤,𝑢,𝑖)   𝑈(𝑤,𝑢,𝑖)   𝐹(𝑤)

Proof of Theorem mnuprdlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2820 . . . . 5 (𝑖 = {∅} → (𝑖𝑢 ↔ {∅} ∈ 𝑢))
21anbi1d 633 . . . 4 (𝑖 = {∅} → ((𝑖𝑢 𝑢𝑤) ↔ ({∅} ∈ 𝑢 𝑢𝑤)))
32rexbidv 3207 . . 3 (𝑖 = {∅} → (∃𝑢𝐹 (𝑖𝑢 𝑢𝑤) ↔ ∃𝑢𝐹 ({∅} ∈ 𝑢 𝑢𝑤)))
4 mnuprdlem2.8 . . 3 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
5 p0ex 5252 . . . . 5 {∅} ∈ V
65prid2 4655 . . . 4 {∅} ∈ {∅, {∅}}
76a1i 11 . . 3 (𝜑 → {∅} ∈ {∅, {∅}})
83, 4, 7rspcdva 3529 . 2 (𝜑 → ∃𝑢𝐹 ({∅} ∈ 𝑢 𝑢𝑤))
9 simpl 486 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝜑)
10 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎𝐹)
11 simpr 488 . . . . . . . . . . 11 ((𝜑 ∧ {∅} ∈ 𝑎) → {∅} ∈ 𝑎)
12 0nep0 5225 . . . . . . . . . . . . . . 15 ∅ ≠ {∅}
1312necomi 2988 . . . . . . . . . . . . . 14 {∅} ≠ ∅
1413a1i 11 . . . . . . . . . . . . 13 (𝜑 → {∅} ≠ ∅)
15 mnuprdlem2.5 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐴 = ∅)
16 0ex 5176 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
1716sneqr 4727 . . . . . . . . . . . . . . . 16 ({∅} = {𝐴} → ∅ = 𝐴)
1817eqcomd 2744 . . . . . . . . . . . . . . 15 ({∅} = {𝐴} → 𝐴 = ∅)
1915, 18nsyl 142 . . . . . . . . . . . . . 14 (𝜑 → ¬ {∅} = {𝐴})
2019neqned 2941 . . . . . . . . . . . . 13 (𝜑 → {∅} ≠ {𝐴})
2114, 20nelprd 4548 . . . . . . . . . . . 12 (𝜑 → ¬ {∅} ∈ {∅, {𝐴}})
2221adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ {∅} ∈ 𝑎) → ¬ {∅} ∈ {∅, {𝐴}})
2311, 22elnelneqd 41352 . . . . . . . . . 10 ((𝜑 ∧ {∅} ∈ 𝑎) → ¬ 𝑎 = {∅, {𝐴}})
2423adantrr 717 . . . . . . . . 9 ((𝜑 ∧ ({∅} ∈ 𝑎 𝑎𝑤)) → ¬ 𝑎 = {∅, {𝐴}})
2524adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → ¬ 𝑎 = {∅, {𝐴}})
26 elpri 4539 . . . . . . . . . 10 (𝑎 ∈ {{∅, {𝐴}}, {{∅}, {𝐵}}} → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
27 mnuprdlem2.1 . . . . . . . . . 10 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
2826, 27eleq2s 2851 . . . . . . . . 9 (𝑎𝐹 → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
2928ord 863 . . . . . . . 8 (𝑎𝐹 → (¬ 𝑎 = {∅, {𝐴}} → 𝑎 = {{∅}, {𝐵}}))
3010, 25, 29sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎 = {{∅}, {𝐵}})
3130unieqd 4811 . . . . . 6 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎 = {{∅}, {𝐵}})
32 snex 5299 . . . . . . . 8 {𝐵} ∈ V
335, 32unipr 4815 . . . . . . 7 {{∅}, {𝐵}} = ({∅} ∪ {𝐵})
34 df-pr 4520 . . . . . . 7 {∅, 𝐵} = ({∅} ∪ {𝐵})
3533, 34eqtr4i 2764 . . . . . 6 {{∅}, {𝐵}} = {∅, 𝐵}
3631, 35eqtrdi 2789 . . . . 5 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎 = {∅, 𝐵})
37 simprrr 782 . . . . 5 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎𝑤)
3836, 37eqsstrrd 3917 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → {∅, 𝐵} ⊆ 𝑤)
39 mnuprdlem2.4 . . . . . 6 (𝜑𝐵𝑈)
40 prssg 4708 . . . . . 6 ((∅ ∈ V ∧ 𝐵𝑈) → ((∅ ∈ 𝑤𝐵𝑤) ↔ {∅, 𝐵} ⊆ 𝑤))
4116, 39, 40sylancr 590 . . . . 5 (𝜑 → ((∅ ∈ 𝑤𝐵𝑤) ↔ {∅, 𝐵} ⊆ 𝑤))
4241biimprd 251 . . . 4 (𝜑 → ({∅, 𝐵} ⊆ 𝑤 → (∅ ∈ 𝑤𝐵𝑤)))
439, 38, 42sylc 65 . . 3 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → (∅ ∈ 𝑤𝐵𝑤))
4443simprd 499 . 2 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝐵𝑤)
45 eleq2w 2816 . . 3 (𝑢 = 𝑎 → ({∅} ∈ 𝑢 ↔ {∅} ∈ 𝑎))
46 unieq 4808 . . . 4 (𝑢 = 𝑎 𝑢 = 𝑎)
4746sseq1d 3909 . . 3 (𝑢 = 𝑎 → ( 𝑢𝑤 𝑎𝑤))
4845, 47anbi12d 634 . 2 (𝑢 = 𝑎 → (({∅} ∈ 𝑢 𝑢𝑤) ↔ ({∅} ∈ 𝑎 𝑎𝑤)))
498, 44, 48rexlimddvcbvw 41356 1 (𝜑𝐵𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2113  wne 2934  wral 3053  wrex 3054  Vcvv 3398  cun 3842  wss 3844  c0 4212  {csn 4517  {cpr 4519   cuni 4797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-v 3400  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-pw 4491  df-sn 4518  df-pr 4520  df-uni 4798
This theorem is referenced by:  mnuprdlem4  41427
  Copyright terms: Public domain W3C validator