Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprdlem2 Structured version   Visualization version   GIF version

Theorem mnuprdlem2 43017
Description: Lemma for mnuprd 43020. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
mnuprdlem2.1 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
mnuprdlem2.4 (𝜑𝐵𝑈)
mnuprdlem2.5 (𝜑 → ¬ 𝐴 = ∅)
mnuprdlem2.8 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
Assertion
Ref Expression
mnuprdlem2 (𝜑𝐵𝑤)
Distinct variable groups:   𝑤,𝑖,𝑢   𝑢,𝐹,𝑖
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑖)   𝐴(𝑤,𝑢,𝑖)   𝐵(𝑤,𝑢,𝑖)   𝑈(𝑤,𝑢,𝑖)   𝐹(𝑤)

Proof of Theorem mnuprdlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑖 = {∅} → (𝑖𝑢 ↔ {∅} ∈ 𝑢))
21anbi1d 630 . . . 4 (𝑖 = {∅} → ((𝑖𝑢 𝑢𝑤) ↔ ({∅} ∈ 𝑢 𝑢𝑤)))
32rexbidv 3178 . . 3 (𝑖 = {∅} → (∃𝑢𝐹 (𝑖𝑢 𝑢𝑤) ↔ ∃𝑢𝐹 ({∅} ∈ 𝑢 𝑢𝑤)))
4 mnuprdlem2.8 . . 3 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
5 p0ex 5381 . . . . 5 {∅} ∈ V
65prid2 4766 . . . 4 {∅} ∈ {∅, {∅}}
76a1i 11 . . 3 (𝜑 → {∅} ∈ {∅, {∅}})
83, 4, 7rspcdva 3613 . 2 (𝜑 → ∃𝑢𝐹 ({∅} ∈ 𝑢 𝑢𝑤))
9 simpl 483 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝜑)
10 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎𝐹)
11 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ {∅} ∈ 𝑎) → {∅} ∈ 𝑎)
12 0nep0 5355 . . . . . . . . . . . . . . 15 ∅ ≠ {∅}
1312necomi 2995 . . . . . . . . . . . . . 14 {∅} ≠ ∅
1413a1i 11 . . . . . . . . . . . . 13 (𝜑 → {∅} ≠ ∅)
15 mnuprdlem2.5 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐴 = ∅)
16 0ex 5306 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
1716sneqr 4840 . . . . . . . . . . . . . . . 16 ({∅} = {𝐴} → ∅ = 𝐴)
1817eqcomd 2738 . . . . . . . . . . . . . . 15 ({∅} = {𝐴} → 𝐴 = ∅)
1915, 18nsyl 140 . . . . . . . . . . . . . 14 (𝜑 → ¬ {∅} = {𝐴})
2019neqned 2947 . . . . . . . . . . . . 13 (𝜑 → {∅} ≠ {𝐴})
2114, 20nelprd 4658 . . . . . . . . . . . 12 (𝜑 → ¬ {∅} ∈ {∅, {𝐴}})
2221adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ {∅} ∈ 𝑎) → ¬ {∅} ∈ {∅, {𝐴}})
2311, 22elnelneqd 42939 . . . . . . . . . 10 ((𝜑 ∧ {∅} ∈ 𝑎) → ¬ 𝑎 = {∅, {𝐴}})
2423adantrr 715 . . . . . . . . 9 ((𝜑 ∧ ({∅} ∈ 𝑎 𝑎𝑤)) → ¬ 𝑎 = {∅, {𝐴}})
2524adantrl 714 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → ¬ 𝑎 = {∅, {𝐴}})
26 elpri 4649 . . . . . . . . . 10 (𝑎 ∈ {{∅, {𝐴}}, {{∅}, {𝐵}}} → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
27 mnuprdlem2.1 . . . . . . . . . 10 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
2826, 27eleq2s 2851 . . . . . . . . 9 (𝑎𝐹 → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
2928ord 862 . . . . . . . 8 (𝑎𝐹 → (¬ 𝑎 = {∅, {𝐴}} → 𝑎 = {{∅}, {𝐵}}))
3010, 25, 29sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎 = {{∅}, {𝐵}})
3130unieqd 4921 . . . . . 6 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎 = {{∅}, {𝐵}})
32 snex 5430 . . . . . . . 8 {𝐵} ∈ V
335, 32unipr 4925 . . . . . . 7 {{∅}, {𝐵}} = ({∅} ∪ {𝐵})
34 df-pr 4630 . . . . . . 7 {∅, 𝐵} = ({∅} ∪ {𝐵})
3533, 34eqtr4i 2763 . . . . . 6 {{∅}, {𝐵}} = {∅, 𝐵}
3631, 35eqtrdi 2788 . . . . 5 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎 = {∅, 𝐵})
37 simprrr 780 . . . . 5 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝑎𝑤)
3836, 37eqsstrrd 4020 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → {∅, 𝐵} ⊆ 𝑤)
39 mnuprdlem2.4 . . . . . 6 (𝜑𝐵𝑈)
40 prssg 4821 . . . . . 6 ((∅ ∈ V ∧ 𝐵𝑈) → ((∅ ∈ 𝑤𝐵𝑤) ↔ {∅, 𝐵} ⊆ 𝑤))
4116, 39, 40sylancr 587 . . . . 5 (𝜑 → ((∅ ∈ 𝑤𝐵𝑤) ↔ {∅, 𝐵} ⊆ 𝑤))
4241biimprd 247 . . . 4 (𝜑 → ({∅, 𝐵} ⊆ 𝑤 → (∅ ∈ 𝑤𝐵𝑤)))
439, 38, 42sylc 65 . . 3 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → (∅ ∈ 𝑤𝐵𝑤))
4443simprd 496 . 2 ((𝜑 ∧ (𝑎𝐹 ∧ ({∅} ∈ 𝑎 𝑎𝑤))) → 𝐵𝑤)
45 eleq2w 2817 . . 3 (𝑢 = 𝑎 → ({∅} ∈ 𝑢 ↔ {∅} ∈ 𝑎))
46 unieq 4918 . . . 4 (𝑢 = 𝑎 𝑢 = 𝑎)
4746sseq1d 4012 . . 3 (𝑢 = 𝑎 → ( 𝑢𝑤 𝑎𝑤))
4845, 47anbi12d 631 . 2 (𝑢 = 𝑎 → (({∅} ∈ 𝑢 𝑢𝑤) ↔ ({∅} ∈ 𝑎 𝑎𝑤)))
498, 44, 48rexlimddvcbvw 42943 1 (𝜑𝐵𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  Vcvv 3474  cun 3945  wss 3947  c0 4321  {csn 4627  {cpr 4629   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-pw 4603  df-sn 4628  df-pr 4630  df-uni 4908
This theorem is referenced by:  mnuprdlem4  43019
  Copyright terms: Public domain W3C validator