Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprdlem1 Structured version   Visualization version   GIF version

Theorem mnuprdlem1 43031
Description: Lemma for mnuprd 43035. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
mnuprdlem1.1 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
mnuprdlem1.3 (𝜑𝐴𝑈)
mnuprdlem1.4 (𝜑𝐵𝑈)
mnuprdlem1.8 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
Assertion
Ref Expression
mnuprdlem1 (𝜑𝐴𝑤)
Distinct variable groups:   𝑤,𝑖,𝑢   𝑢,𝐹,𝑖
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑖)   𝐴(𝑤,𝑢,𝑖)   𝐵(𝑤,𝑢,𝑖)   𝑈(𝑤,𝑢,𝑖)   𝐹(𝑤)

Proof of Theorem mnuprdlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2822 . . . . 5 (𝑖 = ∅ → (𝑖𝑢 ↔ ∅ ∈ 𝑢))
21anbi1d 631 . . . 4 (𝑖 = ∅ → ((𝑖𝑢 𝑢𝑤) ↔ (∅ ∈ 𝑢 𝑢𝑤)))
32rexbidv 3179 . . 3 (𝑖 = ∅ → (∃𝑢𝐹 (𝑖𝑢 𝑢𝑤) ↔ ∃𝑢𝐹 (∅ ∈ 𝑢 𝑢𝑤)))
4 mnuprdlem1.8 . . 3 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
5 0ex 5308 . . . . 5 ∅ ∈ V
65prid1 4767 . . . 4 ∅ ∈ {∅, {∅}}
76a1i 11 . . 3 (𝜑 → ∅ ∈ {∅, {∅}})
83, 4, 7rspcdva 3614 . 2 (𝜑 → ∃𝑢𝐹 (∅ ∈ 𝑢 𝑢𝑤))
9 mnuprdlem1.3 . . . 4 (𝜑𝐴𝑈)
109adantr 482 . . 3 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝐴𝑈)
11 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎𝐹)
12 simpr 486 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ 𝑎) → ∅ ∈ 𝑎)
13 0nep0 5357 . . . . . . . . . . . . 13 ∅ ≠ {∅}
1413a1i 11 . . . . . . . . . . . 12 (𝜑 → ∅ ≠ {∅})
15 mnuprdlem1.4 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
1615snn0d 4780 . . . . . . . . . . . . 13 (𝜑 → {𝐵} ≠ ∅)
1716necomd 2997 . . . . . . . . . . . 12 (𝜑 → ∅ ≠ {𝐵})
1814, 17nelprd 4660 . . . . . . . . . . 11 (𝜑 → ¬ ∅ ∈ {{∅}, {𝐵}})
1918adantr 482 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ 𝑎) → ¬ ∅ ∈ {{∅}, {𝐵}})
2012, 19elnelneqd 42954 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ 𝑎) → ¬ 𝑎 = {{∅}, {𝐵}})
2120adantrr 716 . . . . . . . 8 ((𝜑 ∧ (∅ ∈ 𝑎 𝑎𝑤)) → ¬ 𝑎 = {{∅}, {𝐵}})
2221adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → ¬ 𝑎 = {{∅}, {𝐵}})
23 elpri 4651 . . . . . . . . . 10 (𝑎 ∈ {{∅, {𝐴}}, {{∅}, {𝐵}}} → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
24 mnuprdlem1.1 . . . . . . . . . 10 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
2523, 24eleq2s 2852 . . . . . . . . 9 (𝑎𝐹 → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
2625orcomd 870 . . . . . . . 8 (𝑎𝐹 → (𝑎 = {{∅}, {𝐵}} ∨ 𝑎 = {∅, {𝐴}}))
2726ord 863 . . . . . . 7 (𝑎𝐹 → (¬ 𝑎 = {{∅}, {𝐵}} → 𝑎 = {∅, {𝐴}}))
2811, 22, 27sylc 65 . . . . . 6 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎 = {∅, {𝐴}})
2928unieqd 4923 . . . . 5 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎 = {∅, {𝐴}})
30 snex 5432 . . . . . . 7 {𝐴} ∈ V
315, 30unipr 4927 . . . . . 6 {∅, {𝐴}} = (∅ ∪ {𝐴})
32 uncom 4154 . . . . . 6 (∅ ∪ {𝐴}) = ({𝐴} ∪ ∅)
33 un0 4391 . . . . . 6 ({𝐴} ∪ ∅) = {𝐴}
3431, 32, 333eqtri 2765 . . . . 5 {∅, {𝐴}} = {𝐴}
3529, 34eqtrdi 2789 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎 = {𝐴})
36 simprrr 781 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎𝑤)
3735, 36eqsstrrd 4022 . . 3 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → {𝐴} ⊆ 𝑤)
38 snssg 4788 . . . 4 (𝐴𝑈 → (𝐴𝑤 ↔ {𝐴} ⊆ 𝑤))
3938biimprd 247 . . 3 (𝐴𝑈 → ({𝐴} ⊆ 𝑤𝐴𝑤))
4010, 37, 39sylc 65 . 2 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝐴𝑤)
41 eleq2w 2818 . . 3 (𝑢 = 𝑎 → (∅ ∈ 𝑢 ↔ ∅ ∈ 𝑎))
42 unieq 4920 . . . 4 (𝑢 = 𝑎 𝑢 = 𝑎)
4342sseq1d 4014 . . 3 (𝑢 = 𝑎 → ( 𝑢𝑤 𝑎𝑤))
4441, 43anbi12d 632 . 2 (𝑢 = 𝑎 → ((∅ ∈ 𝑢 𝑢𝑤) ↔ (∅ ∈ 𝑎 𝑎𝑤)))
458, 40, 44rexlimddvcbvw 42958 1 (𝜑𝐴𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cun 3947  wss 3949  c0 4323  {csn 4629  {cpr 4631   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-sn 4630  df-pr 4632  df-uni 4910
This theorem is referenced by:  mnuprdlem4  43034
  Copyright terms: Public domain W3C validator