Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprdlem1 Structured version   Visualization version   GIF version

Theorem mnuprdlem1 42124
Description: Lemma for mnuprd 42128. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
mnuprdlem1.1 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
mnuprdlem1.3 (𝜑𝐴𝑈)
mnuprdlem1.4 (𝜑𝐵𝑈)
mnuprdlem1.8 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
Assertion
Ref Expression
mnuprdlem1 (𝜑𝐴𝑤)
Distinct variable groups:   𝑤,𝑖,𝑢   𝑢,𝐹,𝑖
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑖)   𝐴(𝑤,𝑢,𝑖)   𝐵(𝑤,𝑢,𝑖)   𝑈(𝑤,𝑢,𝑖)   𝐹(𝑤)

Proof of Theorem mnuprdlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2825 . . . . 5 (𝑖 = ∅ → (𝑖𝑢 ↔ ∅ ∈ 𝑢))
21anbi1d 630 . . . 4 (𝑖 = ∅ → ((𝑖𝑢 𝑢𝑤) ↔ (∅ ∈ 𝑢 𝑢𝑤)))
32rexbidv 3172 . . 3 (𝑖 = ∅ → (∃𝑢𝐹 (𝑖𝑢 𝑢𝑤) ↔ ∃𝑢𝐹 (∅ ∈ 𝑢 𝑢𝑤)))
4 mnuprdlem1.8 . . 3 (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))
5 0ex 5246 . . . . 5 ∅ ∈ V
65prid1 4708 . . . 4 ∅ ∈ {∅, {∅}}
76a1i 11 . . 3 (𝜑 → ∅ ∈ {∅, {∅}})
83, 4, 7rspcdva 3571 . 2 (𝜑 → ∃𝑢𝐹 (∅ ∈ 𝑢 𝑢𝑤))
9 mnuprdlem1.3 . . . 4 (𝜑𝐴𝑈)
109adantr 481 . . 3 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝐴𝑈)
11 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎𝐹)
12 simpr 485 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ 𝑎) → ∅ ∈ 𝑎)
13 0nep0 5295 . . . . . . . . . . . . 13 ∅ ≠ {∅}
1413a1i 11 . . . . . . . . . . . 12 (𝜑 → ∅ ≠ {∅})
15 mnuprdlem1.4 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
1615snn0d 4721 . . . . . . . . . . . . 13 (𝜑 → {𝐵} ≠ ∅)
1716necomd 2997 . . . . . . . . . . . 12 (𝜑 → ∅ ≠ {𝐵})
1814, 17nelprd 4602 . . . . . . . . . . 11 (𝜑 → ¬ ∅ ∈ {{∅}, {𝐵}})
1918adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ 𝑎) → ¬ ∅ ∈ {{∅}, {𝐵}})
2012, 19elnelneqd 42047 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ 𝑎) → ¬ 𝑎 = {{∅}, {𝐵}})
2120adantrr 714 . . . . . . . 8 ((𝜑 ∧ (∅ ∈ 𝑎 𝑎𝑤)) → ¬ 𝑎 = {{∅}, {𝐵}})
2221adantrl 713 . . . . . . 7 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → ¬ 𝑎 = {{∅}, {𝐵}})
23 elpri 4593 . . . . . . . . . 10 (𝑎 ∈ {{∅, {𝐴}}, {{∅}, {𝐵}}} → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
24 mnuprdlem1.1 . . . . . . . . . 10 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}
2523, 24eleq2s 2856 . . . . . . . . 9 (𝑎𝐹 → (𝑎 = {∅, {𝐴}} ∨ 𝑎 = {{∅}, {𝐵}}))
2625orcomd 868 . . . . . . . 8 (𝑎𝐹 → (𝑎 = {{∅}, {𝐵}} ∨ 𝑎 = {∅, {𝐴}}))
2726ord 861 . . . . . . 7 (𝑎𝐹 → (¬ 𝑎 = {{∅}, {𝐵}} → 𝑎 = {∅, {𝐴}}))
2811, 22, 27sylc 65 . . . . . 6 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎 = {∅, {𝐴}})
2928unieqd 4864 . . . . 5 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎 = {∅, {𝐴}})
30 snex 5369 . . . . . . 7 {𝐴} ∈ V
315, 30unipr 4868 . . . . . 6 {∅, {𝐴}} = (∅ ∪ {𝐴})
32 uncom 4098 . . . . . 6 (∅ ∪ {𝐴}) = ({𝐴} ∪ ∅)
33 un0 4335 . . . . . 6 ({𝐴} ∪ ∅) = {𝐴}
3431, 32, 333eqtri 2769 . . . . 5 {∅, {𝐴}} = {𝐴}
3529, 34eqtrdi 2793 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎 = {𝐴})
36 simprrr 779 . . . 4 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝑎𝑤)
3735, 36eqsstrrd 3970 . . 3 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → {𝐴} ⊆ 𝑤)
38 snssg 4729 . . . 4 (𝐴𝑈 → (𝐴𝑤 ↔ {𝐴} ⊆ 𝑤))
3938biimprd 247 . . 3 (𝐴𝑈 → ({𝐴} ⊆ 𝑤𝐴𝑤))
4010, 37, 39sylc 65 . 2 ((𝜑 ∧ (𝑎𝐹 ∧ (∅ ∈ 𝑎 𝑎𝑤))) → 𝐴𝑤)
41 eleq2w 2821 . . 3 (𝑢 = 𝑎 → (∅ ∈ 𝑢 ↔ ∅ ∈ 𝑎))
42 unieq 4861 . . . 4 (𝑢 = 𝑎 𝑢 = 𝑎)
4342sseq1d 3962 . . 3 (𝑢 = 𝑎 → ( 𝑢𝑤 𝑎𝑤))
4441, 43anbi12d 631 . 2 (𝑢 = 𝑎 → ((∅ ∈ 𝑢 𝑢𝑤) ↔ (∅ ∈ 𝑎 𝑎𝑤)))
458, 40, 44rexlimddvcbvw 42051 1 (𝜑𝐴𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2941  wral 3062  wrex 3071  cun 3895  wss 3897  c0 4267  {csn 4571  {cpr 4573   cuni 4850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-sn 4572  df-pr 4574  df-uni 4851
This theorem is referenced by:  mnuprdlem4  42127
  Copyright terms: Public domain W3C validator