MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcri Structured version   Visualization version   GIF version

Theorem eqabcri 2873
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.)
Hypothesis
Ref Expression
eqabcri.1 {𝑥𝜑} = 𝐴
Assertion
Ref Expression
eqabcri (𝜑𝑥𝐴)

Proof of Theorem eqabcri
StepHypRef Expression
1 eqabcri.1 . . . 4 {𝑥𝜑} = 𝐴
21eqcomi 2736 . . 3 𝐴 = {𝑥𝜑}
32eqabri 2872 . 2 (𝑥𝐴𝜑)
43bicomi 223 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  {cab 2704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator