![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabcri | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
eqabcri.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
Ref | Expression |
---|---|
eqabcri | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabcri.1 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
2 | 1 | eqcomi 2736 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
3 | 2 | eqabri 2872 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
4 | 3 | bicomi 223 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |