| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabcri.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
| Ref | Expression |
|---|---|
| eqabcri | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcri.1 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
| 2 | 1 | eqcomi 2740 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| 3 | 2 | eqabri 2874 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: setinds2regs 35127 |
| Copyright terms: Public domain | W3C validator |