| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabcri.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
| Ref | Expression |
|---|---|
| eqabcri | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcri.1 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
| 2 | 1 | eqcomi 2743 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| 3 | 2 | eqabri 2877 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |