![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | eqabrd 2875 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 {cab 2708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 |
This theorem is referenced by: eqabcri 2877 rabid 3451 csbcow 3908 csbco 3909 csbgfi 3914 csbnestgfw 4419 csbnestgf 4424 ssrelOLD 5783 relopabi 5822 cnv0 6140 funcnv3 6618 opabiota 6974 zfrep6 7945 frrlem2 8278 frrlem3 8279 frrlem4 8280 frrlem8 8284 fprresex 8301 wfrlem2OLD 8315 wfrlem3OLD 8316 wfrlem4OLD 8318 wfrdmclOLD 8323 tfrlem4 8385 tfrlem8 8390 tfrlem9 8391 ixpn0 8930 sbthlem1 9089 dffi3 9432 1idpr 11030 ltexprlem1 11037 ltexprlem2 11038 ltexprlem3 11039 ltexprlem4 11040 ltexprlem6 11042 ltexprlem7 11043 reclem2pr 11049 reclem3pr 11050 reclem4pr 11051 supsrlem 11112 dissnref 23353 dissnlocfin 23354 txbas 23392 xkoccn 23444 xkoptsub 23479 xkoco1cn 23482 xkoco2cn 23483 xkoinjcn 23512 mbfi1fseqlem4 25569 avril1 30151 rnmposs 32334 bnj1436 34316 bnj916 34410 bnj983 34428 bnj1083 34455 bnj1245 34491 bnj1311 34501 bnj1371 34506 bnj1398 34511 setinds 35222 bj-elsngl 36316 bj-projun 36342 bj-projval 36344 f1omptsnlem 36684 icoreresf 36700 finxp0 36739 finxp1o 36740 finxpsuclem 36745 sdclem1 37078 csbcom2fi 37463 rr-grothshortbi 43528 upwordisword 46057 tworepnotupword 46062 |
Copyright terms: Public domain | W3C validator |