| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2878 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: eqabcri 2880 rabid 3442 csbcow 3894 csbco 3895 csbgfi 3899 csbnestgfw 4402 csbnestgf 4407 ssrelOLD 5767 relopabi 5806 cnv0 6134 funcnv3 6611 opabiota 6966 zfrep6 7958 frrlem2 8291 frrlem3 8292 frrlem4 8293 frrlem8 8297 fprresex 8314 wfrlem2OLD 8328 wfrlem3OLD 8329 wfrlem4OLD 8331 wfrdmclOLD 8336 tfrlem4 8398 tfrlem8 8403 tfrlem9 8404 ixpn0 8949 sbthlem1 9102 dffi3 9448 1idpr 11048 ltexprlem1 11055 ltexprlem2 11056 ltexprlem3 11057 ltexprlem4 11058 ltexprlem6 11060 ltexprlem7 11061 reclem2pr 11067 reclem3pr 11068 reclem4pr 11069 supsrlem 11130 dissnref 23471 dissnlocfin 23472 txbas 23510 xkoccn 23562 xkoptsub 23597 xkoco1cn 23600 xkoco2cn 23601 xkoinjcn 23630 mbfi1fseqlem4 25676 avril1 30449 rnmposs 32657 bnj1436 34875 bnj916 34969 bnj983 34987 bnj1083 35014 bnj1245 35050 bnj1311 35060 bnj1371 35065 bnj1398 35070 setinds 35801 bj-elsngl 36991 bj-projun 37017 bj-projval 37019 f1omptsnlem 37359 icoreresf 37375 finxp0 37414 finxp1o 37415 finxpsuclem 37420 sdclem1 37772 csbcom2fi 38157 rr-grothshortbi 44294 modelaxreplem3 44972 upwordisword 46877 tworepnotupword 46882 |
| Copyright terms: Public domain | W3C validator |