| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2874 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 4 | 3 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: eqabcri 2876 rabid 3417 csbcow 3861 csbco 3862 csbgfi 3866 csbnestgfw 4371 csbnestgf 4376 relopabi 5768 cnv0OLD 6094 funcnv3 6558 opabiota 6912 zfrep6 7895 frrlem2 8225 frrlem3 8226 frrlem4 8227 frrlem8 8231 fprresex 8248 tfrlem4 8306 tfrlem8 8311 tfrlem9 8312 ixpn0 8862 sbthlem1 9009 dffi3 9324 setinds 9648 1idpr 10929 ltexprlem1 10936 ltexprlem2 10937 ltexprlem3 10938 ltexprlem4 10939 ltexprlem6 10941 ltexprlem7 10942 reclem2pr 10948 reclem3pr 10949 reclem4pr 10950 supsrlem 11011 dissnref 23446 dissnlocfin 23447 txbas 23485 xkoccn 23537 xkoptsub 23572 xkoco1cn 23575 xkoco2cn 23576 xkoinjcn 23605 mbfi1fseqlem4 25649 avril1 30447 rnmposs 32660 bnj1436 34874 bnj916 34968 bnj983 34986 bnj1083 35013 bnj1245 35049 bnj1311 35059 bnj1371 35064 bnj1398 35069 tz9.1regs 35153 bj-elsngl 37035 bj-projun 37061 bj-projval 37063 f1omptsnlem 37403 icoreresf 37419 finxp0 37458 finxp1o 37459 finxpsuclem 37464 sdclem1 37806 csbcom2fi 38191 rr-grothshortbi 44423 modelaxreplem3 45100 |
| Copyright terms: Public domain | W3C validator |