![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | eqabrd 2874 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 {cab 2707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: eqabcri 2876 rabid 3450 csbcow 3909 csbco 3910 csbgfi 3915 csbnestgfw 4420 csbnestgf 4425 ssrelOLD 5784 relopabi 5823 cnv0 6141 funcnv3 6619 opabiota 6975 zfrep6 7945 frrlem2 8276 frrlem3 8277 frrlem4 8278 frrlem8 8282 fprresex 8299 wfrlem2OLD 8313 wfrlem3OLD 8314 wfrlem4OLD 8316 wfrdmclOLD 8321 tfrlem4 8383 tfrlem8 8388 tfrlem9 8389 ixpn0 8928 sbthlem1 9087 dffi3 9430 1idpr 11028 ltexprlem1 11035 ltexprlem2 11036 ltexprlem3 11037 ltexprlem4 11038 ltexprlem6 11040 ltexprlem7 11041 reclem2pr 11047 reclem3pr 11048 reclem4pr 11049 supsrlem 11110 dissnref 23254 dissnlocfin 23255 txbas 23293 xkoccn 23345 xkoptsub 23380 xkoco1cn 23383 xkoco2cn 23384 xkoinjcn 23413 mbfi1fseqlem4 25470 avril1 29981 rnmposs 32164 bnj1436 34146 bnj916 34240 bnj983 34258 bnj1083 34285 bnj1245 34321 bnj1311 34331 bnj1371 34336 bnj1398 34341 setinds 35052 bj-elsngl 36154 bj-projun 36180 bj-projval 36182 f1omptsnlem 36522 icoreresf 36538 finxp0 36577 finxp1o 36578 finxpsuclem 36583 sdclem1 36916 csbcom2fi 37301 rr-grothshortbi 43366 upwordisword 45895 tworepnotupword 45900 |
Copyright terms: Public domain | W3C validator |