| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2870 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqabcri 2872 rabid 3427 csbcow 3877 csbco 3878 csbgfi 3882 csbnestgfw 4385 csbnestgf 4390 ssrelOLD 5746 relopabi 5785 cnv0 6113 funcnv3 6586 opabiota 6943 zfrep6 7933 frrlem2 8266 frrlem3 8267 frrlem4 8268 frrlem8 8272 fprresex 8289 tfrlem4 8347 tfrlem8 8352 tfrlem9 8353 ixpn0 8903 sbthlem1 9051 dffi3 9382 1idpr 10982 ltexprlem1 10989 ltexprlem2 10990 ltexprlem3 10991 ltexprlem4 10992 ltexprlem6 10994 ltexprlem7 10995 reclem2pr 11001 reclem3pr 11002 reclem4pr 11003 supsrlem 11064 dissnref 23415 dissnlocfin 23416 txbas 23454 xkoccn 23506 xkoptsub 23541 xkoco1cn 23544 xkoco2cn 23545 xkoinjcn 23574 mbfi1fseqlem4 25619 avril1 30392 rnmposs 32598 bnj1436 34829 bnj916 34923 bnj983 34941 bnj1083 34968 bnj1245 35004 bnj1311 35014 bnj1371 35019 bnj1398 35024 setinds 35766 bj-elsngl 36956 bj-projun 36982 bj-projval 36984 f1omptsnlem 37324 icoreresf 37340 finxp0 37379 finxp1o 37380 finxpsuclem 37385 sdclem1 37737 csbcom2fi 38122 rr-grothshortbi 44292 modelaxreplem3 44970 upwordisword 46879 tworepnotupword 46884 |
| Copyright terms: Public domain | W3C validator |