![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | eqabrd 2887 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1544 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eqabcri 2889 rabid 3465 csbcow 3936 csbco 3937 csbgfi 3942 csbnestgfw 4445 csbnestgf 4450 ssrelOLD 5807 relopabi 5846 cnv0 6172 funcnv3 6648 opabiota 7004 zfrep6 7995 frrlem2 8328 frrlem3 8329 frrlem4 8330 frrlem8 8334 fprresex 8351 wfrlem2OLD 8365 wfrlem3OLD 8366 wfrlem4OLD 8368 wfrdmclOLD 8373 tfrlem4 8435 tfrlem8 8440 tfrlem9 8441 ixpn0 8988 sbthlem1 9149 dffi3 9500 1idpr 11098 ltexprlem1 11105 ltexprlem2 11106 ltexprlem3 11107 ltexprlem4 11108 ltexprlem6 11110 ltexprlem7 11111 reclem2pr 11117 reclem3pr 11118 reclem4pr 11119 supsrlem 11180 dissnref 23557 dissnlocfin 23558 txbas 23596 xkoccn 23648 xkoptsub 23683 xkoco1cn 23686 xkoco2cn 23687 xkoinjcn 23716 mbfi1fseqlem4 25773 avril1 30495 rnmposs 32692 bnj1436 34815 bnj916 34909 bnj983 34927 bnj1083 34954 bnj1245 34990 bnj1311 35000 bnj1371 35005 bnj1398 35010 setinds 35742 bj-elsngl 36934 bj-projun 36960 bj-projval 36962 f1omptsnlem 37302 icoreresf 37318 finxp0 37357 finxp1o 37358 finxpsuclem 37363 sdclem1 37703 csbcom2fi 38088 rr-grothshortbi 44272 upwordisword 46800 tworepnotupword 46805 |
Copyright terms: Public domain | W3C validator |