| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2873 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 4 | 3 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: eqabcri 2875 rabid 3416 csbcow 3865 csbco 3866 csbgfi 3870 csbnestgfw 4372 csbnestgf 4377 relopabi 5762 cnv0 6087 funcnv3 6551 opabiota 6904 zfrep6 7887 frrlem2 8217 frrlem3 8218 frrlem4 8219 frrlem8 8223 fprresex 8240 tfrlem4 8298 tfrlem8 8303 tfrlem9 8304 ixpn0 8854 sbthlem1 9000 dffi3 9315 setinds 9639 1idpr 10920 ltexprlem1 10927 ltexprlem2 10928 ltexprlem3 10929 ltexprlem4 10930 ltexprlem6 10932 ltexprlem7 10933 reclem2pr 10939 reclem3pr 10940 reclem4pr 10941 supsrlem 11002 dissnref 23444 dissnlocfin 23445 txbas 23483 xkoccn 23535 xkoptsub 23570 xkoco1cn 23573 xkoco2cn 23574 xkoinjcn 23603 mbfi1fseqlem4 25647 avril1 30441 rnmposs 32654 bnj1436 34849 bnj916 34943 bnj983 34961 bnj1083 34988 bnj1245 35024 bnj1311 35034 bnj1371 35039 bnj1398 35044 tz9.1regs 35128 bj-elsngl 37008 bj-projun 37034 bj-projval 37036 f1omptsnlem 37376 icoreresf 37392 finxp0 37431 finxp1o 37432 finxpsuclem 37437 sdclem1 37789 csbcom2fi 38174 rr-grothshortbi 44342 modelaxreplem3 45019 |
| Copyright terms: Public domain | W3C validator |