![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | eqabrd 2882 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1544 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2106 {cab 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: eqabcri 2884 rabid 3455 csbcow 3923 csbco 3924 csbgfi 3929 csbnestgfw 4428 csbnestgf 4433 ssrelOLD 5796 relopabi 5835 cnv0 6163 funcnv3 6638 opabiota 6991 zfrep6 7978 frrlem2 8311 frrlem3 8312 frrlem4 8313 frrlem8 8317 fprresex 8334 wfrlem2OLD 8348 wfrlem3OLD 8349 wfrlem4OLD 8351 wfrdmclOLD 8356 tfrlem4 8418 tfrlem8 8423 tfrlem9 8424 ixpn0 8969 sbthlem1 9122 dffi3 9469 1idpr 11067 ltexprlem1 11074 ltexprlem2 11075 ltexprlem3 11076 ltexprlem4 11077 ltexprlem6 11079 ltexprlem7 11080 reclem2pr 11086 reclem3pr 11087 reclem4pr 11088 supsrlem 11149 dissnref 23552 dissnlocfin 23553 txbas 23591 xkoccn 23643 xkoptsub 23678 xkoco1cn 23681 xkoco2cn 23682 xkoinjcn 23711 mbfi1fseqlem4 25768 avril1 30492 rnmposs 32691 bnj1436 34832 bnj916 34926 bnj983 34944 bnj1083 34971 bnj1245 35007 bnj1311 35017 bnj1371 35022 bnj1398 35027 setinds 35760 bj-elsngl 36951 bj-projun 36977 bj-projval 36979 f1omptsnlem 37319 icoreresf 37335 finxp0 37374 finxp1o 37375 finxpsuclem 37380 sdclem1 37730 csbcom2fi 38115 rr-grothshortbi 44299 modelaxreplem3 44945 upwordisword 46835 tworepnotupword 46840 |
Copyright terms: Public domain | W3C validator |