| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2870 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqabcri 2872 rabid 3418 csbcow 3868 csbco 3869 csbgfi 3873 csbnestgfw 4375 csbnestgf 4380 relopabi 5769 cnv0 6093 funcnv3 6556 opabiota 6909 zfrep6 7897 frrlem2 8227 frrlem3 8228 frrlem4 8229 frrlem8 8233 fprresex 8250 tfrlem4 8308 tfrlem8 8313 tfrlem9 8314 ixpn0 8864 sbthlem1 9011 dffi3 9340 1idpr 10942 ltexprlem1 10949 ltexprlem2 10950 ltexprlem3 10951 ltexprlem4 10952 ltexprlem6 10954 ltexprlem7 10955 reclem2pr 10961 reclem3pr 10962 reclem4pr 10963 supsrlem 11024 dissnref 23431 dissnlocfin 23432 txbas 23470 xkoccn 23522 xkoptsub 23557 xkoco1cn 23560 xkoco2cn 23561 xkoinjcn 23590 mbfi1fseqlem4 25635 avril1 30425 rnmposs 32631 bnj1436 34808 bnj916 34902 bnj983 34920 bnj1083 34947 bnj1245 34983 bnj1311 34993 bnj1371 34998 bnj1398 35003 tz9.1regs 35069 setinds 35754 bj-elsngl 36944 bj-projun 36970 bj-projval 36972 f1omptsnlem 37312 icoreresf 37328 finxp0 37367 finxp1o 37368 finxpsuclem 37373 sdclem1 37725 csbcom2fi 38110 rr-grothshortbi 44279 modelaxreplem3 44957 upwordisword 46866 tworepnotupword 46871 |
| Copyright terms: Public domain | W3C validator |