| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabri | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabri.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| eqabri | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabri.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2871 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: eqabcri 2873 rabid 3430 csbcow 3880 csbco 3881 csbgfi 3885 csbnestgfw 4388 csbnestgf 4393 ssrelOLD 5749 relopabi 5788 cnv0 6116 funcnv3 6589 opabiota 6946 zfrep6 7936 frrlem2 8269 frrlem3 8270 frrlem4 8271 frrlem8 8275 fprresex 8292 tfrlem4 8350 tfrlem8 8355 tfrlem9 8356 ixpn0 8906 sbthlem1 9057 dffi3 9389 1idpr 10989 ltexprlem1 10996 ltexprlem2 10997 ltexprlem3 10998 ltexprlem4 10999 ltexprlem6 11001 ltexprlem7 11002 reclem2pr 11008 reclem3pr 11009 reclem4pr 11010 supsrlem 11071 dissnref 23422 dissnlocfin 23423 txbas 23461 xkoccn 23513 xkoptsub 23548 xkoco1cn 23551 xkoco2cn 23552 xkoinjcn 23581 mbfi1fseqlem4 25626 avril1 30399 rnmposs 32605 bnj1436 34836 bnj916 34930 bnj983 34948 bnj1083 34975 bnj1245 35011 bnj1311 35021 bnj1371 35026 bnj1398 35031 setinds 35773 bj-elsngl 36963 bj-projun 36989 bj-projval 36991 f1omptsnlem 37331 icoreresf 37347 finxp0 37386 finxp1o 37387 finxpsuclem 37392 sdclem1 37744 csbcom2fi 38129 rr-grothshortbi 44299 modelaxreplem3 44977 upwordisword 46886 tworepnotupword 46891 |
| Copyright terms: Public domain | W3C validator |