Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsalhw | Structured version Visualization version GIF version |
Description: Version of equsalh 2419 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
Ref | Expression |
---|---|
equsalhw.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
equsalhw.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsalhw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalhw.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | nf5i 2146 | . 2 ⊢ Ⅎ𝑥𝜓 |
3 | equsalhw.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | equsalv 2264 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1788 df-nf 1792 |
This theorem is referenced by: dvelimhw 2346 |
Copyright terms: Public domain | W3C validator |