MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalh Structured version   Visualization version   GIF version

Theorem equsalh 2460
Description: An equivalence related to implicit substitution. See equsalhw 2297 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 2-Jun-1993.)
Hypotheses
Ref Expression
equsalh.1 (𝜓 → ∀𝑥𝜓)
equsalh.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsalh (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsalh
StepHypRef Expression
1 equsalh.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2189 . 2 𝑥𝜓
3 equsalh.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsal 2457 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wal 1635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-10 2184  ax-12 2213  ax-13 2419
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ex 1860  df-nf 1864
This theorem is referenced by:  dvelimf-o  34702
  Copyright terms: Public domain W3C validator