Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalh Structured version   Visualization version   GIF version

Theorem equsalh 2436
 Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2384. See equsalhw 2293 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 2-Jun-1993.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsalh.1 (𝜓 → ∀𝑥𝜓)
equsalh.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsalh (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsalh
StepHypRef Expression
1 equsalh.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2144 . 2 𝑥𝜓
3 equsalh.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsal 2433 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208  ∀wal 1529 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-10 2139  ax-12 2170  ax-13 2384 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1775  df-nf 1779 This theorem is referenced by:  dvelimf-o  36057
 Copyright terms: Public domain W3C validator