Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvelimhw | Structured version Visualization version GIF version |
Description: Proof of dvelimh 2450 without using ax-13 2372 but with additional distinct variable conditions. (Contributed by NM, 1-Oct-2002.) (Revised by Andrew Salmon, 21-Jul-2011.) (Revised by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 23-Dec-2018.) |
Ref | Expression |
---|---|
dvelimhw.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
dvelimhw.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
dvelimhw.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
dvelimhw.4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
dvelimhw | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | equcom 2021 | . . . . . 6 ⊢ (𝑧 = 𝑦 ↔ 𝑦 = 𝑧) | |
3 | nfna1 2149 | . . . . . . 7 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
4 | dvelimhw.4 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | |
5 | 3, 4 | nf5d 2281 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) |
6 | 2, 5 | nfxfrd 1856 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
7 | dvelimhw.1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥𝜑) | |
8 | 7 | nf5i 2142 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 |
9 | 8 | a1i 11 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
10 | 6, 9 | nfimd 1897 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
11 | 1, 10 | nfald 2322 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)) |
12 | dvelimhw.2 | . . . . 5 ⊢ (𝜓 → ∀𝑧𝜓) | |
13 | dvelimhw.3 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
14 | 12, 13 | equsalhw 2288 | . . . 4 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
15 | 14 | nfbii 1854 | . . 3 ⊢ (Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ Ⅎ𝑥𝜓) |
16 | 11, 15 | sylib 217 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
17 | 16 | nf5rd 2189 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |