MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexh Structured version   Visualization version   GIF version

Theorem equsexh 2429
Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See equsexhv 2296 for a version with a disjoint variable condition which does not require ax-13 2380. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsalh.1 (𝜓 → ∀𝑥𝜓)
equsalh.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexh (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsexh
StepHypRef Expression
1 equsalh.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2146 . 2 𝑥𝜓
3 equsalh.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsex 2426 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator