![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexh | Structured version Visualization version GIF version |
Description: An equivalence related to implicit substitution. See equsexhv 2266 for a version with a disjoint variable condition which does not require ax-13 2344. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equsalh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
equsalh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexh | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalh.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | nf5i 2117 | . 2 ⊢ Ⅎ𝑥𝜓 |
3 | equsalh.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | equsex 2396 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 ∃wex 1761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |