MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsex Structured version   Visualization version   GIF version

Theorem equsex 2418
Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See equsexvw 2006 and equsexv 2271 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2417. See equsexALT 2419 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsal.1 𝑥𝜓
equsal.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsex (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsex
StepHypRef Expression
1 equsal.1 . . 3 𝑥𝜓
2 equsal.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpa 476 . . 3 ((𝑥 = 𝑦𝜑) → 𝜓)
41, 3exlimi 2220 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → 𝜓)
51, 2equsal 2417 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
6 equs4 2416 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6sylbir 235 . 2 (𝜓 → ∃𝑥(𝑥 = 𝑦𝜑))
84, 7impbii 209 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785
This theorem is referenced by:  equsexh  2421  sb5rf  2467
  Copyright terms: Public domain W3C validator