![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsex | Structured version Visualization version GIF version |
Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2375. See equsexvw 2002 and equsexv 2266 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2420. See equsexALT 2422 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsal.1 | ⊢ Ⅎ𝑥𝜓 |
equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsex | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimpa 476 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
4 | 1, 3 | exlimi 2215 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
5 | 1, 2 | equsal 2420 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
6 | equs4 2419 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
7 | 5, 6 | sylbir 235 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1776 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 ax-13 2375 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 |
This theorem is referenced by: equsexh 2424 sb5rf 2470 |
Copyright terms: Public domain | W3C validator |