MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsex Structured version   Visualization version   GIF version

Theorem equsex 2418
Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See equsexvw 2008 and equsexv 2260 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2417. See equsexALT 2419 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsal.1 𝑥𝜓
equsal.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsex (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsex
StepHypRef Expression
1 equsal.1 . . 3 𝑥𝜓
2 equsal.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpa 477 . . 3 ((𝑥 = 𝑦𝜑) → 𝜓)
41, 3exlimi 2210 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → 𝜓)
51, 2equsal 2417 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
6 equs4 2416 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6sylbir 234 . 2 (𝜓 → ∃𝑥(𝑥 = 𝑦𝜑))
84, 7impbii 208 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  equsexh  2421  sb5rf  2467
  Copyright terms: Public domain W3C validator