![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsex | Structured version Visualization version GIF version |
Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See equsexvw 2004 and equsexv 2269 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2425. See equsexALT 2427 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsal.1 | ⊢ Ⅎ𝑥𝜓 |
equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsex | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimpa 476 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
4 | 1, 3 | exlimi 2218 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
5 | 1, 2 | equsal 2425 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
6 | equs4 2424 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
7 | 5, 6 | sylbir 235 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 |
This theorem is referenced by: equsexh 2429 sb5rf 2475 |
Copyright terms: Public domain | W3C validator |