| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsex | Structured version Visualization version GIF version | ||
| Description: An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See equsexvw 2006 and equsexv 2271 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2417. See equsexALT 2419 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equsal.1 | ⊢ Ⅎ𝑥𝜓 |
| equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsex | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpa 476 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
| 4 | 1, 3 | exlimi 2220 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
| 5 | 1, 2 | equsal 2417 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| 6 | equs4 2416 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | 5, 6 | sylbir 235 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: equsexh 2421 sb5rf 2467 |
| Copyright terms: Public domain | W3C validator |