MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eubiiOLD Structured version   Visualization version   GIF version

Theorem eubiiOLD 2606
Description: Obsolete version of eubii 2605 as of 27-Sep-2023. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
eubii.1 (𝜑𝜓)
Assertion
Ref Expression
eubiiOLD (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)

Proof of Theorem eubiiOLD
StepHypRef Expression
1 eubi 2604 . 2 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓))
2 eubii.1 . 2 (𝜑𝜓)
31, 2mpg 1800 1 (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 209  ∃!weu 2588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912
This theorem depends on definitions:  df-bi 210  df-an 401  df-ex 1783  df-mo 2558  df-eu 2589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator