![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1907. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1844 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2545 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2566 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2566 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 ∃*wmo 2535 ∃!weu 2565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-mo 2537 df-eu 2566 |
This theorem is referenced by: cbveu 2604 2eu7 2655 2eu8 2656 exists1 2658 reubiia 3384 reuanidOLD 3390 cbvreuwOLD 3412 cbvreu 3424 reuv 3507 reurab 3709 euxfr2w 3728 euxfrw 3729 euxfr2 3730 euxfr 3731 2reuswap 3754 2reuswap2 3755 2reu5lem1 3763 reuun2 4330 euelss 4337 reusv2lem4 5406 copsexgw 5500 copsexg 5501 funeu2 6593 funcnv3 6637 fneu2 6679 tz6.12 6931 f1ompt 7130 fsn 7154 oeeu 8639 dfac5lem1 10160 dfac5lem5 10164 zmin 12983 climreu 15588 divalglem10 16435 divalgb 16437 dfinito2 18056 dftermo2 18057 txcn 23649 nbusgredgeu0 29399 adjeu 31917 reuxfrdf 32518 bnj130 34866 bnj207 34873 bnj864 34914 reueqi 36170 reueqbii 36171 bj-nuliota 37039 poimirlem25 37631 poimirlem27 37633 tfsconcatlem 43325 aiotaval 47044 afveu 47102 tz6.12-1-afv 47123 tz6.12-afv2 47189 tz6.12-1-afv2 47190 pairreueq 47434 reutru 48652 |
Copyright terms: Public domain | W3C validator |