![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1909. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1846 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2551 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 627 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2572 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2572 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∃*wmo 2541 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 |
This theorem is referenced by: cbveu 2610 2eu7 2661 2eu8 2662 exists1 2664 reubiia 3395 reuanidOLD 3401 cbvreuwOLD 3423 cbvreu 3435 reuv 3518 reurab 3723 euxfr2w 3742 euxfrw 3743 euxfr2 3744 euxfr 3745 2reuswap 3768 2reuswap2 3769 2reu5lem1 3777 reuun2 4344 euelss 4351 reusv2lem4 5419 copsexgw 5510 copsexg 5511 funeu2 6604 funcnv3 6648 fneu2 6690 tz6.12 6945 f1ompt 7145 fsn 7169 oeeu 8659 dfac5lem1 10192 dfac5lem5 10196 zmin 13009 climreu 15602 divalglem10 16450 divalgb 16452 dfinito2 18070 dftermo2 18071 txcn 23655 nbusgredgeu0 29403 adjeu 31921 reuxfrdf 32519 bnj130 34850 bnj207 34857 bnj864 34898 reueqi 36153 reueqbii 36154 bj-nuliota 37023 poimirlem25 37605 poimirlem27 37607 tfsconcatlem 43298 aiotaval 47010 afveu 47068 tz6.12-1-afv 47089 tz6.12-afv2 47155 tz6.12-1-afv2 47156 pairreueq 47384 reutru 48537 |
Copyright terms: Public domain | W3C validator |