| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| 3 | 1 | mobii 2541 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
| 5 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: cbveu 2600 2eu7 2651 2eu8 2652 exists1 2654 reubiia 3361 reuanidOLD 3367 cbvreu 3397 reuv 3476 reurab 3672 euxfr2w 3691 euxfrw 3692 euxfr2 3693 euxfr 3694 2reuswap 3717 2reuswap2 3718 2reu5lem1 3726 reuun2 4288 euelss 4295 reusv2lem4 5356 copsexgw 5450 copsexg 5451 funeu2 6542 funcnv3 6586 fneu2 6629 tz6.12 6883 f1ompt 7083 fsn 7107 oeeu 8567 dfac5lem1 10076 dfac5lem5 10080 zmin 12903 climreu 15522 divalglem10 16372 divalgb 16374 dfinito2 17965 dftermo2 17966 txcn 23513 nbusgredgeu0 29295 adjeu 31818 reuxfrdf 32420 bnj130 34864 bnj207 34871 bnj864 34912 reueqi 36177 reueqbii 36178 bj-nuliota 37045 poimirlem25 37639 poimirlem27 37641 tfsconcatlem 43325 dfac5prim 44980 modelac8prim 44982 permac8prim 45004 aiotaval 47096 afveu 47154 tz6.12-1-afv 47175 tz6.12-afv2 47241 tz6.12-1-afv2 47242 pairreueq 47511 reutru 48792 |
| Copyright terms: Public domain | W3C validator |