| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1911. (Revised by Wolf Lammen, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1849 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| 3 | 1 | mobii 2543 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
| 5 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∃*wmo 2533 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: cbveu 2602 2eu7 2653 2eu8 2654 exists1 2656 reubiia 3353 cbvreu 3387 reuv 3465 reurab 3655 euxfr2w 3674 euxfrw 3675 euxfr2 3676 euxfr 3677 2reuswap 3700 2reuswap2 3701 2reu5lem1 3709 reuun2 4272 euelss 4279 reusv2lem4 5337 copsexgw 5428 copsexg 5429 funeu2 6507 funcnv3 6551 fneu2 6592 tz6.12 6846 f1ompt 7044 fsn 7068 oeeu 8518 dfac5lem1 10014 dfac5lem5 10018 zmin 12842 climreu 15463 divalglem10 16313 divalgb 16315 dfinito2 17910 dftermo2 17911 txcn 23541 nbusgredgeu0 29346 adjeu 31869 reuxfrdf 32470 bnj130 34886 bnj207 34893 bnj864 34934 reueqi 36231 reueqbii 36232 bj-nuliota 37099 poimirlem25 37693 poimirlem27 37695 tfsconcatlem 43377 dfac5prim 45031 modelac8prim 45033 permac8prim 45055 aiotaval 47134 afveu 47192 tz6.12-1-afv 47213 tz6.12-afv2 47279 tz6.12-1-afv2 47280 pairreueq 47549 reutru 48843 |
| Copyright terms: Public domain | W3C validator |