| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| 3 | 1 | mobii 2542 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
| 5 | df-eu 2563 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2563 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2532 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 |
| This theorem is referenced by: cbveu 2601 2eu7 2652 2eu8 2653 exists1 2655 reubiia 3363 reuanidOLD 3369 cbvreuwOLD 3389 cbvreu 3400 reuv 3479 reurab 3675 euxfr2w 3694 euxfrw 3695 euxfr2 3696 euxfr 3697 2reuswap 3720 2reuswap2 3721 2reu5lem1 3729 reuun2 4291 euelss 4298 reusv2lem4 5359 copsexgw 5453 copsexg 5454 funeu2 6545 funcnv3 6589 fneu2 6632 tz6.12 6886 f1ompt 7086 fsn 7110 oeeu 8570 dfac5lem1 10083 dfac5lem5 10087 zmin 12910 climreu 15529 divalglem10 16379 divalgb 16381 dfinito2 17972 dftermo2 17973 txcn 23520 nbusgredgeu0 29302 adjeu 31825 reuxfrdf 32427 bnj130 34871 bnj207 34878 bnj864 34919 reueqi 36184 reueqbii 36185 bj-nuliota 37052 poimirlem25 37646 poimirlem27 37648 tfsconcatlem 43332 dfac5prim 44987 modelac8prim 44989 permac8prim 45011 aiotaval 47100 afveu 47158 tz6.12-1-afv 47179 tz6.12-afv2 47245 tz6.12-1-afv2 47246 pairreueq 47515 reutru 48796 |
| Copyright terms: Public domain | W3C validator |