![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1888. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1829 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2586 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 626 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2612 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2612 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 304 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∃wex 1761 ∃*wmo 2574 ∃!weu 2611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-mo 2576 df-eu 2612 |
This theorem is referenced by: cbveu 2655 2eu7 2715 2eu8 2716 exists1 2719 reuanid 3289 reubiia 3350 cbvreu 3401 reuv 3464 euxfr2 3650 euxfr 3651 2reuswap 3674 2reuswap2 3675 2reu5lem1 3683 reuun2 4210 euelss 4214 reusv2lem4 5198 copsexg 5278 funeu2 6256 funcnv3 6299 fneu2 6337 tz6.12 6566 f1ompt 6743 fsn 6765 oeeu 8084 dfac5lem1 9400 dfac5lem5 9404 zmin 12198 climreu 14752 divalglem10 15591 divalgb 15593 txcn 21923 nbusgredgeu0 26838 adjeu 29362 reuxfrdf 29952 bnj130 31767 bnj207 31774 bnj864 31815 bj-nuliota 33973 poimirlem25 34473 poimirlem27 34475 aiotaval 42835 afveu 42894 tz6.12-1-afv 42915 tz6.12-afv2 42981 tz6.12-1-afv2 42982 pairreueq 43180 |
Copyright terms: Public domain | W3C validator |