| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| 3 | 1 | mobii 2541 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
| 5 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: cbveu 2600 2eu7 2651 2eu8 2652 exists1 2654 reubiia 3350 reuanidOLD 3356 cbvreu 3386 reuv 3465 reurab 3661 euxfr2w 3680 euxfrw 3681 euxfr2 3682 euxfr 3683 2reuswap 3706 2reuswap2 3707 2reu5lem1 3715 reuun2 4276 euelss 4283 reusv2lem4 5340 copsexgw 5433 copsexg 5434 funeu2 6508 funcnv3 6552 fneu2 6593 tz6.12 6846 f1ompt 7045 fsn 7069 oeeu 8521 dfac5lem1 10017 dfac5lem5 10021 zmin 12845 climreu 15463 divalglem10 16313 divalgb 16315 dfinito2 17910 dftermo2 17911 txcn 23511 nbusgredgeu0 29313 adjeu 31833 reuxfrdf 32435 bnj130 34841 bnj207 34848 bnj864 34889 reueqi 36163 reueqbii 36164 bj-nuliota 37031 poimirlem25 37625 poimirlem27 37627 tfsconcatlem 43309 dfac5prim 44964 modelac8prim 44966 permac8prim 44988 aiotaval 47079 afveu 47137 tz6.12-1-afv 47158 tz6.12-afv2 47224 tz6.12-1-afv2 47225 pairreueq 47494 reutru 48788 |
| Copyright terms: Public domain | W3C validator |