Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1914. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2548 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 626 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 |
This theorem is referenced by: cbveuwOLD 2608 cbveu 2609 2eu7 2659 2eu8 2660 exists1 2662 reuanid 3256 reubiia 3316 cbvreuw 3365 cbvreu 3370 reuv 3448 euxfr2w 3650 euxfrw 3651 euxfr2 3652 euxfr 3653 2reuswap 3676 2reuswap2 3677 2reu5lem1 3685 reuun2 4245 euelss 4252 reusv2lem4 5319 copsexgw 5398 copsexg 5399 funeu2 6444 funcnv3 6488 fneu2 6528 tz6.12 6779 f1ompt 6967 fsn 6989 oeeu 8396 dfac5lem1 9810 dfac5lem5 9814 zmin 12613 climreu 15193 divalglem10 16039 divalgb 16041 dfinito2 17634 dftermo2 17635 txcn 22685 nbusgredgeu0 27638 adjeu 30152 reuxfrdf 30740 bnj130 32754 bnj207 32761 bnj864 32802 reurab 33576 bj-nuliota 35155 poimirlem25 35729 poimirlem27 35731 aiotaval 44474 afveu 44532 tz6.12-1-afv 44553 tz6.12-afv2 44619 tz6.12-1-afv2 44620 pairreueq 44850 reutru 46039 |
Copyright terms: Public domain | W3C validator |