| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| 3 | 1 | mobii 2541 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
| 5 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: cbveu 2600 2eu7 2651 2eu8 2652 exists1 2654 reubiia 3358 reuanidOLD 3364 cbvreu 3394 reuv 3473 reurab 3669 euxfr2w 3688 euxfrw 3689 euxfr2 3690 euxfr 3691 2reuswap 3714 2reuswap2 3715 2reu5lem1 3723 reuun2 4284 euelss 4291 reusv2lem4 5351 copsexgw 5445 copsexg 5446 funeu2 6526 funcnv3 6570 fneu2 6611 tz6.12 6865 f1ompt 7065 fsn 7089 oeeu 8544 dfac5lem1 10052 dfac5lem5 10056 zmin 12879 climreu 15498 divalglem10 16348 divalgb 16350 dfinito2 17941 dftermo2 17942 txcn 23489 nbusgredgeu0 29271 adjeu 31791 reuxfrdf 32393 bnj130 34837 bnj207 34844 bnj864 34885 reueqi 36150 reueqbii 36151 bj-nuliota 37018 poimirlem25 37612 poimirlem27 37614 tfsconcatlem 43298 dfac5prim 44953 modelac8prim 44955 permac8prim 44977 aiotaval 47069 afveu 47127 tz6.12-1-afv 47148 tz6.12-afv2 47214 tz6.12-1-afv2 47215 pairreueq 47484 reutru 48765 |
| Copyright terms: Public domain | W3C validator |