![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1914. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2543 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1782 ∃*wmo 2533 ∃!weu 2563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-mo 2535 df-eu 2564 |
This theorem is referenced by: cbveuwOLD 2603 cbveu 2604 2eu7 2654 2eu8 2655 exists1 2657 reubiia 3384 reuanidOLD 3390 cbvreuwOLD 3413 cbvreu 3425 reuv 3501 reurab 3698 euxfr2w 3717 euxfrw 3718 euxfr2 3719 euxfr 3720 2reuswap 3743 2reuswap2 3744 2reu5lem1 3752 reuun2 4315 euelss 4322 reusv2lem4 5400 copsexgw 5491 copsexg 5492 funeu2 6575 funcnv3 6619 fneu2 6661 tz6.12 6917 f1ompt 7111 fsn 7133 oeeu 8603 dfac5lem1 10118 dfac5lem5 10122 zmin 12928 climreu 15500 divalglem10 16345 divalgb 16347 dfinito2 17953 dftermo2 17954 txcn 23130 nbusgredgeu0 28625 adjeu 31142 reuxfrdf 31731 bnj130 33885 bnj207 33892 bnj864 33933 bj-nuliota 35938 poimirlem25 36513 poimirlem27 36515 tfsconcatlem 42086 aiotaval 45803 afveu 45861 tz6.12-1-afv 45882 tz6.12-afv2 45948 tz6.12-1-afv2 45949 pairreueq 46178 reutru 47490 |
Copyright terms: Public domain | W3C validator |