Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1912. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1849 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2546 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 627 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2567 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2567 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∃*wmo 2536 ∃!weu 2566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-mo 2538 df-eu 2567 |
This theorem is referenced by: cbveuwOLD 2606 cbveu 2607 2eu7 2657 2eu8 2658 exists1 2660 reubiia 3356 reuanidOLD 3362 cbvreuwOLD 3385 cbvreu 3395 reuv 3467 euxfr2w 3665 euxfrw 3666 euxfr2 3667 euxfr 3668 2reuswap 3691 2reuswap2 3692 2reu5lem1 3700 reuun2 4260 euelss 4267 reusv2lem4 5341 copsexgw 5428 copsexg 5429 funeu2 6504 funcnv3 6548 fneu2 6590 tz6.12 6844 f1ompt 7035 fsn 7057 oeeu 8497 dfac5lem1 9972 dfac5lem5 9976 zmin 12777 climreu 15356 divalglem10 16202 divalgb 16204 dfinito2 17807 dftermo2 17808 txcn 22875 nbusgredgeu0 27965 adjeu 30480 reuxfrdf 31068 bnj130 33094 bnj207 33101 bnj864 33142 reurab 33909 bj-nuliota 35326 poimirlem25 35900 poimirlem27 35902 aiotaval 44927 afveu 44985 tz6.12-1-afv 45006 tz6.12-afv2 45072 tz6.12-1-afv2 45073 pairreueq 45302 reutru 46491 |
Copyright terms: Public domain | W3C validator |