| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| 3 | 1 | mobii 2547 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
| 5 | df-eu 2568 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2568 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2537 ∃!weu 2567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 |
| This theorem is referenced by: cbveu 2606 2eu7 2657 2eu8 2658 exists1 2660 reubiia 3366 reuanidOLD 3372 cbvreuwOLD 3394 cbvreu 3407 reuv 3489 reurab 3684 euxfr2w 3703 euxfrw 3704 euxfr2 3705 euxfr 3706 2reuswap 3729 2reuswap2 3730 2reu5lem1 3738 reuun2 4300 euelss 4307 reusv2lem4 5371 copsexgw 5465 copsexg 5466 funeu2 6562 funcnv3 6606 fneu2 6649 tz6.12 6901 f1ompt 7101 fsn 7125 oeeu 8615 dfac5lem1 10137 dfac5lem5 10141 zmin 12960 climreu 15572 divalglem10 16421 divalgb 16423 dfinito2 18016 dftermo2 18017 txcn 23564 nbusgredgeu0 29347 adjeu 31870 reuxfrdf 32472 bnj130 34905 bnj207 34912 bnj864 34953 reueqi 36207 reueqbii 36208 bj-nuliota 37075 poimirlem25 37669 poimirlem27 37671 tfsconcatlem 43360 dfac5prim 45015 modelac8prim 45017 aiotaval 47124 afveu 47182 tz6.12-1-afv 47203 tz6.12-afv2 47269 tz6.12-1-afv2 47270 pairreueq 47524 reutru 48783 |
| Copyright terms: Public domain | W3C validator |