Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) Avoid ax-5 1914. (Revised by Wolf Lammen, 27-Sep-2023.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
3 | 1 | mobii 2549 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥𝜓) |
4 | 2, 3 | anbi12i 627 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) |
5 | df-eu 2570 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2570 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∃*wmo 2539 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2541 df-eu 2570 |
This theorem is referenced by: cbveuwOLD 2609 cbveu 2610 2eu7 2660 2eu8 2661 exists1 2663 reuanid 3299 reubiia 3325 cbvreuwOLD 3378 cbvreu 3382 reuv 3459 euxfr2w 3656 euxfrw 3657 euxfr2 3658 euxfr 3659 2reuswap 3682 2reuswap2 3683 2reu5lem1 3691 reuun2 4249 euelss 4256 reusv2lem4 5325 copsexgw 5405 copsexg 5406 funeu2 6467 funcnv3 6511 fneu2 6553 tz6.12 6806 f1ompt 6994 fsn 7016 oeeu 8443 dfac5lem1 9888 dfac5lem5 9892 zmin 12693 climreu 15274 divalglem10 16120 divalgb 16122 dfinito2 17727 dftermo2 17728 txcn 22786 nbusgredgeu0 27744 adjeu 30260 reuxfrdf 30848 bnj130 32863 bnj207 32870 bnj864 32911 reurab 33683 bj-nuliota 35237 poimirlem25 35811 poimirlem27 35813 aiotaval 44598 afveu 44656 tz6.12-1-afv 44677 tz6.12-afv2 44743 tz6.12-1-afv2 44744 pairreueq 44973 reutru 46162 |
Copyright terms: Public domain | W3C validator |