| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | eubi 2577 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: euorv 2605 euanv 2617 reubidva 3370 reueubd 3373 reueq1OLD 3390 reueqbidv 3394 eueq2 3681 eueq3 3682 moeq3 3683 reusv2lem2 5354 reusv2lem5 5357 reuhypd 5374 feu 6736 dff3 7072 dff4 7073 omxpenlem 9042 dfac5lem5 10080 dfac5 10082 kmlem2 10105 kmlem12 10115 kmlem13 10116 initoval 17955 termoval 17956 isinito 17958 istermo 17959 initoid 17963 termoid 17964 initoeu1 17973 initoeu2 17978 termoeu1 17980 upxp 23510 edgnbusgreu 29294 nbusgredgeu0 29295 frgrncvvdeqlem2 30229 bnj852 34911 bnj1489 35046 funpartfv 35933 fsuppind 42578 wfac8prim 44992 permac8prim 45004 fourierdlem36 46141 aiotaval 47096 eu2ndop1stv 47126 dfdfat2 47129 tz6.12-afv 47174 tz6.12-afv2 47241 dfatcolem 47256 prprsprreu 47520 prprreueq 47521 initc 49080 initopropd 49232 termopropd 49233 termcterm 49502 termc2 49507 setrec2lem1 49682 |
| Copyright terms: Public domain | W3C validator |