![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2587 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 |
This theorem is referenced by: euorv 2615 euanv 2627 reubidva 3404 reueubd 3407 reueq1OLD 3428 eueq2 3732 eueq3 3733 moeq3 3734 reusv2lem2 5417 reusv2lem5 5420 reuhypd 5437 feu 6797 dff3 7134 dff4 7135 omxpenlem 9139 dfac5lem5 10196 dfac5 10198 kmlem2 10221 kmlem12 10231 kmlem13 10232 initoval 18060 termoval 18061 isinito 18063 istermo 18064 initoid 18068 termoid 18069 initoeu1 18078 initoeu2 18083 termoeu1 18085 upxp 23652 edgnbusgreu 29402 nbusgredgeu0 29403 frgrncvvdeqlem2 30332 bnj852 34897 bnj1489 35032 funpartfv 35909 reueqbidv 36179 fsuppind 42545 fourierdlem36 46064 aiotaval 47010 eu2ndop1stv 47040 dfdfat2 47043 tz6.12-afv 47088 tz6.12-afv2 47155 dfatcolem 47170 prprsprreu 47393 prprreueq 47394 setrec2lem1 48785 |
Copyright terms: Public domain | W3C validator |