| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | eubi 2581 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃!weu 2565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 df-eu 2566 |
| This theorem is referenced by: euorv 2609 euanv 2621 reubidva 3362 reueubd 3365 reueq1OLD 3382 reueqbidv 3386 eueq2 3666 eueq3 3667 moeq3 3668 reusv2lem2 5341 reusv2lem5 5344 reuhypd 5361 feu 6707 dff3 7042 dff4 7043 omxpenlem 9001 dfac5lem5 10028 dfac5 10030 kmlem2 10053 kmlem12 10063 kmlem13 10064 initoval 17910 termoval 17911 isinito 17913 istermo 17914 initoid 17918 termoid 17919 initoeu1 17928 initoeu2 17933 termoeu1 17935 upxp 23548 edgnbusgreu 29356 nbusgredgeu0 29357 frgrncvvdeqlem2 30291 bnj852 34944 bnj1489 35079 funpartfv 36000 exeupre 38513 fsuppind 42698 wfac8prim 45109 permac8prim 45121 fourierdlem36 46255 aiotaval 47209 eu2ndop1stv 47239 dfdfat2 47242 tz6.12-afv 47287 tz6.12-afv2 47354 dfatcolem 47369 prprsprreu 47633 prprreueq 47634 initc 49206 initopropd 49358 termopropd 49359 termcterm 49628 termc2 49633 setrec2lem1 49808 |
| Copyright terms: Public domain | W3C validator |