![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1922 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2572 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ∃!weu 2556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-mo 2528 df-eu 2557 |
This theorem is referenced by: euorv 2600 euanv 2612 reubidva 3380 reueubd 3383 reueq1OLD 3404 eueq2 3703 eueq3 3704 moeq3 3705 reusv2lem2 5398 reusv2lem5 5401 reuhypd 5418 feu 6771 dff3 7107 dff4 7108 omxpenlem 9096 dfac5lem5 10150 dfac5 10151 kmlem2 10174 kmlem12 10184 kmlem13 10185 initoval 17981 termoval 17982 isinito 17984 istermo 17985 initoid 17989 termoid 17990 initoeu1 17999 initoeu2 18004 termoeu1 18006 upxp 23557 edgnbusgreu 29236 nbusgredgeu0 29237 frgrncvvdeqlem2 30166 bnj852 34622 bnj1489 34757 funpartfv 35611 fsuppind 41888 fourierdlem36 45594 aiotaval 46538 eu2ndop1stv 46568 dfdfat2 46571 tz6.12-afv 46616 tz6.12-afv2 46683 dfatcolem 46698 prprsprreu 46922 prprreueq 46923 setrec2lem1 48236 |
Copyright terms: Public domain | W3C validator |