Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2584 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 |
This theorem is referenced by: euorv 2614 euanv 2626 reubidva 3314 reueq1 3335 reueubd 3357 eueq2 3640 eueq3 3641 moeq3 3642 reusv2lem2 5317 reusv2lem5 5320 reuhypd 5337 feu 6634 dff3 6958 dff4 6959 omxpenlem 8813 dfac5lem5 9814 dfac5 9815 kmlem2 9838 kmlem12 9848 kmlem13 9849 initoval 17624 termoval 17625 isinito 17627 istermo 17628 initoid 17632 termoid 17633 initoeu1 17642 initoeu2 17647 termoeu1 17649 upxp 22682 edgnbusgreu 27637 nbusgredgeu0 27638 frgrncvvdeqlem2 28565 bnj852 32801 bnj1489 32936 funpartfv 34174 fsuppind 40202 fourierdlem36 43574 aiotaval 44474 eu2ndop1stv 44504 dfdfat2 44507 tz6.12-afv 44552 tz6.12-afv2 44619 dfatcolem 44634 prprsprreu 44859 prprreueq 44860 setrec2lem1 46285 |
Copyright terms: Public domain | W3C validator |