| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | eubi 2583 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃!weu 2567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 |
| This theorem is referenced by: euorv 2611 euanv 2623 reubidva 3375 reueubd 3378 reueq1OLD 3398 reueqbidv 3402 eueq2 3693 eueq3 3694 moeq3 3695 reusv2lem2 5369 reusv2lem5 5372 reuhypd 5389 feu 6754 dff3 7090 dff4 7091 omxpenlem 9087 dfac5lem5 10141 dfac5 10143 kmlem2 10166 kmlem12 10176 kmlem13 10177 initoval 18006 termoval 18007 isinito 18009 istermo 18010 initoid 18014 termoid 18015 initoeu1 18024 initoeu2 18029 termoeu1 18031 upxp 23561 edgnbusgreu 29346 nbusgredgeu0 29347 frgrncvvdeqlem2 30281 bnj852 34952 bnj1489 35087 funpartfv 35963 fsuppind 42613 wfac8prim 45027 fourierdlem36 46172 aiotaval 47124 eu2ndop1stv 47154 dfdfat2 47157 tz6.12-afv 47202 tz6.12-afv2 47269 dfatcolem 47284 prprsprreu 47533 prprreueq 47534 initopropd 49160 termopropd 49161 termcterm 49398 termc2 49403 setrec2lem1 49557 |
| Copyright terms: Public domain | W3C validator |