Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2584 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 |
This theorem is referenced by: euorv 2614 euanv 2626 reubidva 3322 reueq1 3344 reueubd 3367 eueq2 3645 eueq3 3646 moeq3 3647 reusv2lem2 5322 reusv2lem5 5325 reuhypd 5342 feu 6650 dff3 6976 dff4 6977 omxpenlem 8860 dfac5lem5 9883 dfac5 9884 kmlem2 9907 kmlem12 9917 kmlem13 9918 initoval 17708 termoval 17709 isinito 17711 istermo 17712 initoid 17716 termoid 17717 initoeu1 17726 initoeu2 17731 termoeu1 17733 upxp 22774 edgnbusgreu 27734 nbusgredgeu0 27735 frgrncvvdeqlem2 28664 bnj852 32901 bnj1489 33036 funpartfv 34247 fsuppind 40279 fourierdlem36 43684 aiotaval 44587 eu2ndop1stv 44617 dfdfat2 44620 tz6.12-afv 44665 tz6.12-afv2 44732 dfatcolem 44747 prprsprreu 44971 prprreueq 44972 setrec2lem1 46399 |
Copyright terms: Public domain | W3C validator |