![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1924 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2581 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 ∃!weu 2565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-mo 2537 df-eu 2566 |
This theorem is referenced by: euorv 2609 euanv 2621 reubidva 3393 reueubd 3396 reueq1OLD 3416 eueq2 3718 eueq3 3719 moeq3 3720 reusv2lem2 5404 reusv2lem5 5407 reuhypd 5424 feu 6784 dff3 7119 dff4 7120 omxpenlem 9111 dfac5lem5 10164 dfac5 10166 kmlem2 10189 kmlem12 10199 kmlem13 10200 initoval 18046 termoval 18047 isinito 18049 istermo 18050 initoid 18054 termoid 18055 initoeu1 18064 initoeu2 18069 termoeu1 18071 upxp 23646 edgnbusgreu 29398 nbusgredgeu0 29399 frgrncvvdeqlem2 30328 bnj852 34913 bnj1489 35048 funpartfv 35926 reueqbidv 36195 fsuppind 42576 fourierdlem36 46098 aiotaval 47044 eu2ndop1stv 47074 dfdfat2 47077 tz6.12-afv 47122 tz6.12-afv2 47189 dfatcolem 47204 prprsprreu 47443 prprreueq 47444 setrec2lem1 48923 |
Copyright terms: Public domain | W3C validator |