| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | eubi 2577 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: euorv 2605 euanv 2617 reubidva 3361 reueubd 3364 reueq1OLD 3381 reueqbidv 3385 eueq2 3672 eueq3 3673 moeq3 3674 reusv2lem2 5341 reusv2lem5 5344 reuhypd 5361 feu 6704 dff3 7038 dff4 7039 omxpenlem 9002 dfac5lem5 10040 dfac5 10042 kmlem2 10065 kmlem12 10075 kmlem13 10076 initoval 17918 termoval 17919 isinito 17921 istermo 17922 initoid 17926 termoid 17927 initoeu1 17936 initoeu2 17941 termoeu1 17943 upxp 23526 edgnbusgreu 29330 nbusgredgeu0 29331 frgrncvvdeqlem2 30262 bnj852 34887 bnj1489 35022 funpartfv 35918 fsuppind 42563 wfac8prim 44976 permac8prim 44988 fourierdlem36 46125 aiotaval 47080 eu2ndop1stv 47110 dfdfat2 47113 tz6.12-afv 47158 tz6.12-afv2 47225 dfatcolem 47240 prprsprreu 47504 prprreueq 47505 initc 49064 initopropd 49216 termopropd 49217 termcterm 49486 termc2 49491 setrec2lem1 49666 |
| Copyright terms: Public domain | W3C validator |