![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2579 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∃!weu 2563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-mo 2535 df-eu 2564 |
This theorem is referenced by: euorv 2609 euanv 2621 reubidva 3393 reueubd 3396 reueq1OLD 3418 eueq2 3707 eueq3 3708 moeq3 3709 reusv2lem2 5398 reusv2lem5 5401 reuhypd 5418 feu 6768 dff3 7102 dff4 7103 omxpenlem 9073 dfac5lem5 10122 dfac5 10123 kmlem2 10146 kmlem12 10156 kmlem13 10157 initoval 17943 termoval 17944 isinito 17946 istermo 17947 initoid 17951 termoid 17952 initoeu1 17961 initoeu2 17966 termoeu1 17968 upxp 23127 edgnbusgreu 28655 nbusgredgeu0 28656 frgrncvvdeqlem2 29584 bnj852 33963 bnj1489 34098 funpartfv 34948 fsuppind 41210 fourierdlem36 44907 aiotaval 45851 eu2ndop1stv 45881 dfdfat2 45884 tz6.12-afv 45929 tz6.12-afv2 45996 dfatcolem 46011 prprsprreu 46235 prprreueq 46236 setrec2lem1 47786 |
Copyright terms: Public domain | W3C validator |