Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1935 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2583 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 ∃!weu 2567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-mo 2539 df-eu 2568 |
This theorem is referenced by: euorv 2613 euanv 2625 reubidva 3300 reueq1 3321 reueubd 3343 eueq2 3623 eueq3 3624 moeq3 3625 reusv2lem2 5292 reusv2lem5 5295 reuhypd 5312 feu 6595 dff3 6919 dff4 6920 omxpenlem 8746 dfac5lem5 9741 dfac5 9742 kmlem2 9765 kmlem12 9775 kmlem13 9776 initoval 17499 termoval 17500 isinito 17502 istermo 17503 initoid 17507 termoid 17508 initoeu1 17517 initoeu2 17522 termoeu1 17524 upxp 22520 edgnbusgreu 27455 nbusgredgeu0 27456 frgrncvvdeqlem2 28383 bnj852 32614 bnj1489 32749 funpartfv 33984 fsuppind 39989 fourierdlem36 43359 aiotaval 44259 eu2ndop1stv 44289 dfdfat2 44292 tz6.12-afv 44337 tz6.12-afv2 44404 dfatcolem 44419 prprsprreu 44644 prprreueq 44645 setrec2lem1 46070 |
Copyright terms: Public domain | W3C validator |