| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | eubi 2578 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 |
| This theorem is referenced by: euorv 2606 euanv 2618 reubidva 3372 reueubd 3375 reueq1OLD 3393 reueqbidv 3397 eueq2 3684 eueq3 3685 moeq3 3686 reusv2lem2 5357 reusv2lem5 5360 reuhypd 5377 feu 6739 dff3 7075 dff4 7076 omxpenlem 9047 dfac5lem5 10087 dfac5 10089 kmlem2 10112 kmlem12 10122 kmlem13 10123 initoval 17962 termoval 17963 isinito 17965 istermo 17966 initoid 17970 termoid 17971 initoeu1 17980 initoeu2 17985 termoeu1 17987 upxp 23517 edgnbusgreu 29301 nbusgredgeu0 29302 frgrncvvdeqlem2 30236 bnj852 34918 bnj1489 35053 funpartfv 35940 fsuppind 42585 wfac8prim 44999 permac8prim 45011 fourierdlem36 46148 aiotaval 47100 eu2ndop1stv 47130 dfdfat2 47133 tz6.12-afv 47178 tz6.12-afv2 47245 dfatcolem 47260 prprsprreu 47524 prprreueq 47525 initc 49084 initopropd 49236 termopropd 49237 termcterm 49506 termc2 49511 setrec2lem1 49686 |
| Copyright terms: Public domain | W3C validator |