| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | eubi 2578 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2534 df-eu 2563 |
| This theorem is referenced by: euorv 2606 euanv 2618 reubidva 3358 reueubd 3361 reueq1OLD 3378 reueqbidv 3382 eueq2 3667 eueq3 3668 moeq3 3669 reusv2lem2 5335 reusv2lem5 5338 reuhypd 5355 feu 6695 dff3 7028 dff4 7029 omxpenlem 8986 dfac5lem5 10010 dfac5 10012 kmlem2 10035 kmlem12 10045 kmlem13 10046 initoval 17892 termoval 17893 isinito 17895 istermo 17896 initoid 17900 termoid 17901 initoeu1 17910 initoeu2 17915 termoeu1 17917 upxp 23531 edgnbusgreu 29338 nbusgredgeu0 29339 frgrncvvdeqlem2 30270 bnj852 34923 bnj1489 35058 funpartfv 35958 fsuppind 42602 wfac8prim 45014 permac8prim 45026 fourierdlem36 46160 aiotaval 47105 eu2ndop1stv 47135 dfdfat2 47138 tz6.12-afv 47183 tz6.12-afv2 47250 dfatcolem 47265 prprsprreu 47529 prprreueq 47530 initc 49102 initopropd 49254 termopropd 49255 termcterm 49524 termc2 49529 setrec2lem1 49704 |
| Copyright terms: Public domain | W3C validator |