![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1923 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | eubi 2573 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∃!weu 2557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-mo 2529 df-eu 2558 |
This theorem is referenced by: euorv 2603 euanv 2615 reubidva 3387 reueubd 3390 reueq1OLD 3412 eueq2 3703 eueq3 3704 moeq3 3705 reusv2lem2 5393 reusv2lem5 5396 reuhypd 5413 feu 6767 dff3 7104 dff4 7105 omxpenlem 9089 dfac5lem5 10142 dfac5 10143 kmlem2 10166 kmlem12 10176 kmlem13 10177 initoval 17973 termoval 17974 isinito 17976 istermo 17977 initoid 17981 termoid 17982 initoeu1 17991 initoeu2 17996 termoeu1 17998 upxp 23514 edgnbusgreu 29167 nbusgredgeu0 29168 frgrncvvdeqlem2 30097 bnj852 34488 bnj1489 34623 funpartfv 35477 fsuppind 41745 fourierdlem36 45454 aiotaval 46398 eu2ndop1stv 46428 dfdfat2 46431 tz6.12-afv 46476 tz6.12-afv2 46543 dfatcolem 46558 prprsprreu 46782 prprreueq 46783 setrec2lem1 48047 |
Copyright terms: Public domain | W3C validator |