MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excom13 Structured version   Visualization version   GIF version

Theorem excom13 2170
Description: Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
excom13 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)

Proof of Theorem excom13
StepHypRef Expression
1 excom 2168 . 2 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑥𝑧𝜑)
2 excom 2168 . . 3 (∃𝑥𝑧𝜑 ↔ ∃𝑧𝑥𝜑)
32exbii 1855 . 2 (∃𝑦𝑥𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
4 excom 2168 . 2 (∃𝑦𝑧𝑥𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
51, 3, 43bitri 300 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-11 2160
This theorem depends on definitions:  df-bi 210  df-ex 1788
This theorem is referenced by:  exrot3  2171  exrot4  2172  euotd  5412  elfuns  33987  fundcmpsurbijinj  44580
  Copyright terms: Public domain W3C validator