Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfuns Structured version   Visualization version   GIF version

Theorem elfuns 34144
Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypothesis
Ref Expression
elfuns.1 𝐹 ∈ V
Assertion
Ref Expression
elfuns (𝐹 Funs ↔ Fun 𝐹)

Proof of Theorem elfuns
Dummy variables 𝑎 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 5697 . . . . . . . . . . 11 ((Rel 𝐹𝑝𝐹) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
21ex 412 . . . . . . . . . 10 (Rel 𝐹 → (𝑝𝐹 → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩))
3 elrel 5697 . . . . . . . . . . 11 ((Rel 𝐹𝑞𝐹) → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)
43ex 412 . . . . . . . . . 10 (Rel 𝐹 → (𝑞𝐹 → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
52, 4anim12d 608 . . . . . . . . 9 (Rel 𝐹 → ((𝑝𝐹𝑞𝐹) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
65adantrd 491 . . . . . . . 8 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
76pm4.71rd 562 . . . . . . 7 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
8 19.41vvvv 1957 . . . . . . . 8 (∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9 ee4anv 2351 . . . . . . . . 9 (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ↔ (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
109anbi1i 623 . . . . . . . 8 ((∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
118, 10bitr2i 275 . . . . . . 7 (((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
127, 11bitrdi 286 . . . . . 6 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
13122exbidv 1928 . . . . 5 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
14 excom13 2166 . . . . . 6 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
15 excom13 2166 . . . . . . . 8 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
16 exrot4 2168 . . . . . . . . . 10 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
17 excom 2164 . . . . . . . . . 10 (∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
18 df-3an 1087 . . . . . . . . . . . . . . . 16 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
19182exbii 1852 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
20 opex 5373 . . . . . . . . . . . . . . . 16 𝑥, 𝑦⟩ ∈ V
21 opex 5373 . . . . . . . . . . . . . . . 16 𝑎, 𝑧⟩ ∈ V
22 eleq1 2826 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2322anbi1d 629 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑝𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹)))
24 breq2 5074 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
2523, 24anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩)))
26 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞𝐹 ↔ ⟨𝑎, 𝑧⟩ ∈ 𝐹))
2726anbi2d 628 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹)))
28 breq1 5073 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ ⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
29 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
30 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
3121, 29, 30brtxp 34109 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦))
32 vex 3426 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
33 vex 3426 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
3432, 33br1steq 33651 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩1st 𝑥𝑥 = 𝑎)
35 equcom 2022 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎𝑎 = 𝑥)
3634, 35bitri 274 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩1st 𝑥𝑎 = 𝑥)
3721, 30brco 5768 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦))
3832, 33br2ndeq 33652 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑎, 𝑧⟩2nd 𝑥𝑥 = 𝑧)
3938anbi1i 623 . . . . . . . . . . . . . . . . . . . . . . 23 ((⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ (𝑥 = 𝑧𝑥(V ∖ I )𝑦))
4039exbii 1851 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ ∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦))
41 breq1 5073 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦𝑧(V ∖ I )𝑦))
42 brv 5381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧V𝑦
43 brdif 5123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(V ∖ I )𝑦 ↔ (𝑧V𝑦 ∧ ¬ 𝑧 I 𝑦))
4442, 43mpbiran 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑧 I 𝑦)
4530ideq 5750 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 I 𝑦𝑧 = 𝑦)
46 equcom 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦𝑦 = 𝑧)
4745, 46bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 I 𝑦𝑦 = 𝑧)
4847notbii 319 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 I 𝑦 ↔ ¬ 𝑦 = 𝑧)
4944, 48bitri 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧)
5041, 49bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧))
5150equsexvw 2009 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦) ↔ ¬ 𝑦 = 𝑧)
5237, 40, 513bitri 296 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ¬ 𝑦 = 𝑧)
5336, 52anbi12i 626 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦) ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5431, 53bitri 274 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5528, 54bitrdi 286 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)))
5627, 55anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))))
57 an12 641 . . . . . . . . . . . . . . . . 17 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
5856, 57bitrdi 286 . . . . . . . . . . . . . . . 16 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))))
5920, 21, 25, 58ceqsex2v 3473 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6019, 59bitr3i 276 . . . . . . . . . . . . . 14 (∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6160exbii 1851 . . . . . . . . . . . . 13 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
62 opeq1 4801 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → ⟨𝑎, 𝑧⟩ = ⟨𝑥, 𝑧⟩)
6362eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (⟨𝑎, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
6463anbi2d 628 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
6564anbi1d 629 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6665equsexvw 2009 . . . . . . . . . . . . 13 (∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6761, 66bitri 274 . . . . . . . . . . . 12 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6867exbii 1851 . . . . . . . . . . 11 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
69 exanali 1863 . . . . . . . . . . 11 (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7068, 69bitri 274 . . . . . . . . . 10 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7116, 17, 703bitri 296 . . . . . . . . 9 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7271exbii 1851 . . . . . . . 8 (∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
73 exnal 1830 . . . . . . . 8 (∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7415, 72, 733bitri 296 . . . . . . 7 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7574exbii 1851 . . . . . 6 (∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
76 exnal 1830 . . . . . 6 (∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7714, 75, 763bitri 296 . . . . 5 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7813, 77bitrdi 286 . . . 4 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
7978con2bid 354 . . 3 (Rel 𝐹 → (∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
8079pm5.32i 574 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
81 dffun4 6430 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
82 df-funs 34090 . . . 4 Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
8382eleq2i 2830 . . 3 (𝐹 Funs 𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
84 eldif 3893 . . 3 (𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
85 elfuns.1 . . . . . 6 𝐹 ∈ V
8685elpw 4534 . . . . 5 (𝐹 ∈ 𝒫 (V × V) ↔ 𝐹 ⊆ (V × V))
87 df-rel 5587 . . . . 5 (Rel 𝐹𝐹 ⊆ (V × V))
8886, 87bitr4i 277 . . . 4 (𝐹 ∈ 𝒫 (V × V) ↔ Rel 𝐹)
8985elfix 34132 . . . . . 6 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ 𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹)
9085, 85coep 33625 . . . . . . 7 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝)
91 vex 3426 . . . . . . . . 9 𝑝 ∈ V
9285, 91coepr 33626 . . . . . . . 8 (𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9392rexbii 3177 . . . . . . 7 (∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9490, 93bitri 274 . . . . . 6 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
95 r2ex 3231 . . . . . 6 (∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝 ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9689, 94, 953bitri 296 . . . . 5 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9796notbii 319 . . . 4 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9888, 97anbi12i 626 . . 3 ((𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9983, 84, 983bitri 296 . 2 (𝐹 Funs ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
10080, 81, 993bitr4ri 303 1 (𝐹 Funs ↔ Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530  cop 4564   class class class wbr 5070   I cid 5479   E cep 5485   × cxp 5578  ccnv 5579  ccom 5584  Rel wrel 5585  Fun wfun 6412  1st c1st 7802  2nd c2nd 7803  ctxp 34059   Fix cfix 34064   Funs cfuns 34066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-fix 34088  df-funs 34090
This theorem is referenced by:  elfunsg  34145  dfrecs2  34179  dfrdg4  34180
  Copyright terms: Public domain W3C validator