Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfuns Structured version   Visualization version   GIF version

Theorem elfuns 35899
Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypothesis
Ref Expression
elfuns.1 𝐹 ∈ V
Assertion
Ref Expression
elfuns (𝐹 Funs ↔ Fun 𝐹)

Proof of Theorem elfuns
Dummy variables 𝑎 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 5741 . . . . . . . . . . 11 ((Rel 𝐹𝑝𝐹) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
21ex 412 . . . . . . . . . 10 (Rel 𝐹 → (𝑝𝐹 → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩))
3 elrel 5741 . . . . . . . . . . 11 ((Rel 𝐹𝑞𝐹) → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)
43ex 412 . . . . . . . . . 10 (Rel 𝐹 → (𝑞𝐹 → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
52, 4anim12d 609 . . . . . . . . 9 (Rel 𝐹 → ((𝑝𝐹𝑞𝐹) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
65adantrd 491 . . . . . . . 8 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
76pm4.71rd 562 . . . . . . 7 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
8 19.41vvvv 1952 . . . . . . . 8 (∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9 ee4anv 2349 . . . . . . . . 9 (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ↔ (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
109anbi1i 624 . . . . . . . 8 ((∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
118, 10bitr2i 276 . . . . . . 7 (((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
127, 11bitrdi 287 . . . . . 6 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
13122exbidv 1924 . . . . 5 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
14 excom13 2165 . . . . . 6 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
15 excom13 2165 . . . . . . . 8 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
16 exrot4 2167 . . . . . . . . . 10 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
17 excom 2163 . . . . . . . . . 10 (∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
18 df-3an 1088 . . . . . . . . . . . . . . . 16 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
19182exbii 1849 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
20 opex 5407 . . . . . . . . . . . . . . . 16 𝑥, 𝑦⟩ ∈ V
21 opex 5407 . . . . . . . . . . . . . . . 16 𝑎, 𝑧⟩ ∈ V
22 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2322anbi1d 631 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑝𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹)))
24 breq2 5096 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
2523, 24anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩)))
26 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞𝐹 ↔ ⟨𝑎, 𝑧⟩ ∈ 𝐹))
2726anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹)))
28 breq1 5095 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ ⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
29 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
30 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
3121, 29, 30brtxp 35864 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦))
32 vex 3440 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
33 vex 3440 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
3432, 33br1steq 35754 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩1st 𝑥𝑥 = 𝑎)
35 equcom 2018 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎𝑎 = 𝑥)
3634, 35bitri 275 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩1st 𝑥𝑎 = 𝑥)
3721, 30brco 5813 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦))
3832, 33br2ndeq 35755 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑎, 𝑧⟩2nd 𝑥𝑥 = 𝑧)
3938anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . 23 ((⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ (𝑥 = 𝑧𝑥(V ∖ I )𝑦))
4039exbii 1848 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ ∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦))
41 breq1 5095 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦𝑧(V ∖ I )𝑦))
42 brv 5415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧V𝑦
43 brdif 5145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(V ∖ I )𝑦 ↔ (𝑧V𝑦 ∧ ¬ 𝑧 I 𝑦))
4442, 43mpbiran 709 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑧 I 𝑦)
4530ideq 5795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 I 𝑦𝑧 = 𝑦)
46 equcom 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦𝑦 = 𝑧)
4745, 46bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 I 𝑦𝑦 = 𝑧)
4847notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 I 𝑦 ↔ ¬ 𝑦 = 𝑧)
4944, 48bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧)
5041, 49bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧))
5150equsexvw 2005 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦) ↔ ¬ 𝑦 = 𝑧)
5237, 40, 513bitri 297 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ¬ 𝑦 = 𝑧)
5336, 52anbi12i 628 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦) ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5431, 53bitri 275 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5528, 54bitrdi 287 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)))
5627, 55anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))))
57 an12 645 . . . . . . . . . . . . . . . . 17 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
5856, 57bitrdi 287 . . . . . . . . . . . . . . . 16 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))))
5920, 21, 25, 58ceqsex2v 3491 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6019, 59bitr3i 277 . . . . . . . . . . . . . 14 (∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6160exbii 1848 . . . . . . . . . . . . 13 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
62 opeq1 4824 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → ⟨𝑎, 𝑧⟩ = ⟨𝑥, 𝑧⟩)
6362eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (⟨𝑎, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
6463anbi2d 630 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
6564anbi1d 631 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6665equsexvw 2005 . . . . . . . . . . . . 13 (∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6761, 66bitri 275 . . . . . . . . . . . 12 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6867exbii 1848 . . . . . . . . . . 11 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
69 exanali 1859 . . . . . . . . . . 11 (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7068, 69bitri 275 . . . . . . . . . 10 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7116, 17, 703bitri 297 . . . . . . . . 9 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7271exbii 1848 . . . . . . . 8 (∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
73 exnal 1827 . . . . . . . 8 (∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7415, 72, 733bitri 297 . . . . . . 7 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7574exbii 1848 . . . . . 6 (∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
76 exnal 1827 . . . . . 6 (∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7714, 75, 763bitri 297 . . . . 5 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7813, 77bitrdi 287 . . . 4 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
7978con2bid 354 . . 3 (Rel 𝐹 → (∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
8079pm5.32i 574 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
81 dffun4 6495 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
82 df-funs 35845 . . . 4 Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
8382eleq2i 2820 . . 3 (𝐹 Funs 𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
84 eldif 3913 . . 3 (𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
85 elfuns.1 . . . . . 6 𝐹 ∈ V
8685elpw 4555 . . . . 5 (𝐹 ∈ 𝒫 (V × V) ↔ 𝐹 ⊆ (V × V))
87 df-rel 5626 . . . . 5 (Rel 𝐹𝐹 ⊆ (V × V))
8886, 87bitr4i 278 . . . 4 (𝐹 ∈ 𝒫 (V × V) ↔ Rel 𝐹)
8985elfix 35887 . . . . . 6 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ 𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹)
9085, 85coep 35735 . . . . . . 7 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝)
91 vex 3440 . . . . . . . . 9 𝑝 ∈ V
9285, 91coepr 35736 . . . . . . . 8 (𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9392rexbii 3076 . . . . . . 7 (∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9490, 93bitri 275 . . . . . 6 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
95 r2ex 3166 . . . . . 6 (∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝 ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9689, 94, 953bitri 297 . . . . 5 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9796notbii 320 . . . 4 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9888, 97anbi12i 628 . . 3 ((𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9983, 84, 983bitri 297 . 2 (𝐹 Funs ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
10080, 81, 993bitr4ri 304 1 (𝐹 Funs ↔ Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3436  cdif 3900  wss 3903  𝒫 cpw 4551  cop 4583   class class class wbr 5092   I cid 5513   E cep 5518   × cxp 5617  ccnv 5618  ccom 5623  Rel wrel 5624  Fun wfun 6476  1st c1st 7922  2nd c2nd 7923  ctxp 35814   Fix cfix 35819   Funs cfuns 35821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-1st 7924  df-2nd 7925  df-txp 35838  df-fix 35843  df-funs 35845
This theorem is referenced by:  elfunsg  35900  dfrecs2  35934  dfrdg4  35935
  Copyright terms: Public domain W3C validator