Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfuns Structured version   Visualization version   GIF version

Theorem elfuns 32837
Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypothesis
Ref Expression
elfuns.1 𝐹 ∈ V
Assertion
Ref Expression
elfuns (𝐹 Funs ↔ Fun 𝐹)

Proof of Theorem elfuns
Dummy variables 𝑎 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 5514 . . . . . . . . . . 11 ((Rel 𝐹𝑝𝐹) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
21ex 405 . . . . . . . . . 10 (Rel 𝐹 → (𝑝𝐹 → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩))
3 elrel 5514 . . . . . . . . . . 11 ((Rel 𝐹𝑞𝐹) → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)
43ex 405 . . . . . . . . . 10 (Rel 𝐹 → (𝑞𝐹 → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
52, 4anim12d 599 . . . . . . . . 9 (Rel 𝐹 → ((𝑝𝐹𝑞𝐹) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
65adantrd 484 . . . . . . . 8 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
76pm4.71rd 555 . . . . . . 7 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
8 19.41vvvv 1911 . . . . . . . 8 (∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9 ee4anv 2283 . . . . . . . . 9 (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ↔ (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
109anbi1i 614 . . . . . . . 8 ((∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
118, 10bitr2i 268 . . . . . . 7 (((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
127, 11syl6bb 279 . . . . . 6 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
13122exbidv 1883 . . . . 5 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
14 excom13 2098 . . . . . 6 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
15 excom13 2098 . . . . . . . 8 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
16 exrot4 2100 . . . . . . . . . 10 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
17 excom 2096 . . . . . . . . . 10 (∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
18 df-3an 1070 . . . . . . . . . . . . . . . 16 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
19182exbii 1811 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
20 opex 5206 . . . . . . . . . . . . . . . 16 𝑥, 𝑦⟩ ∈ V
21 opex 5206 . . . . . . . . . . . . . . . 16 𝑎, 𝑧⟩ ∈ V
22 eleq1 2847 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2322anbi1d 620 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑝𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹)))
24 breq2 4927 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
2523, 24anbi12d 621 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩)))
26 eleq1 2847 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞𝐹 ↔ ⟨𝑎, 𝑧⟩ ∈ 𝐹))
2726anbi2d 619 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹)))
28 breq1 4926 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ ⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
29 vex 3412 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
30 vex 3412 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
3121, 29, 30brtxp 32802 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦))
32 vex 3412 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
33 vex 3412 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
3432, 33br1steq 32474 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩1st 𝑥𝑥 = 𝑎)
35 equcom 1974 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎𝑎 = 𝑥)
3634, 35bitri 267 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩1st 𝑥𝑎 = 𝑥)
3721, 30brco 5584 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦))
3832, 33br2ndeq 32475 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑎, 𝑧⟩2nd 𝑥𝑥 = 𝑧)
3938anbi1i 614 . . . . . . . . . . . . . . . . . . . . . . 23 ((⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ (𝑥 = 𝑧𝑥(V ∖ I )𝑦))
4039exbii 1810 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ ∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦))
41 breq1 4926 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦𝑧(V ∖ I )𝑦))
42 brv 5214 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧V𝑦
43 brdif 4976 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(V ∖ I )𝑦 ↔ (𝑧V𝑦 ∧ ¬ 𝑧 I 𝑦))
4442, 43mpbiran 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑧 I 𝑦)
4530ideq 5566 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 I 𝑦𝑧 = 𝑦)
46 equcom 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦𝑦 = 𝑧)
4745, 46bitri 267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 I 𝑦𝑦 = 𝑧)
4847notbii 312 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 I 𝑦 ↔ ¬ 𝑦 = 𝑧)
4944, 48bitri 267 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧)
5041, 49syl6bb 279 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧))
5150equsexvw 1961 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦) ↔ ¬ 𝑦 = 𝑧)
5237, 40, 513bitri 289 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ¬ 𝑦 = 𝑧)
5336, 52anbi12i 617 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦) ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5431, 53bitri 267 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5528, 54syl6bb 279 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)))
5627, 55anbi12d 621 . . . . . . . . . . . . . . . . 17 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))))
57 an12 632 . . . . . . . . . . . . . . . . 17 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
5856, 57syl6bb 279 . . . . . . . . . . . . . . . 16 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))))
5920, 21, 25, 58ceqsex2v 3459 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6019, 59bitr3i 269 . . . . . . . . . . . . . 14 (∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6160exbii 1810 . . . . . . . . . . . . 13 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
62 opeq1 4671 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → ⟨𝑎, 𝑧⟩ = ⟨𝑥, 𝑧⟩)
6362eleq1d 2844 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (⟨𝑎, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
6463anbi2d 619 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
6564anbi1d 620 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6665equsexvw 1961 . . . . . . . . . . . . 13 (∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6761, 66bitri 267 . . . . . . . . . . . 12 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6867exbii 1810 . . . . . . . . . . 11 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
69 exanali 1821 . . . . . . . . . . 11 (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7068, 69bitri 267 . . . . . . . . . 10 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7116, 17, 703bitri 289 . . . . . . . . 9 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7271exbii 1810 . . . . . . . 8 (∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
73 exnal 1789 . . . . . . . 8 (∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7415, 72, 733bitri 289 . . . . . . 7 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7574exbii 1810 . . . . . 6 (∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
76 exnal 1789 . . . . . 6 (∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7714, 75, 763bitri 289 . . . . 5 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7813, 77syl6bb 279 . . . 4 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
7978con2bid 347 . . 3 (Rel 𝐹 → (∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
8079pm5.32i 567 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
81 dffun4 6194 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
82 df-funs 32783 . . . 4 Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
8382eleq2i 2851 . . 3 (𝐹 Funs 𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
84 eldif 3835 . . 3 (𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
85 elfuns.1 . . . . . 6 𝐹 ∈ V
8685elpw 4422 . . . . 5 (𝐹 ∈ 𝒫 (V × V) ↔ 𝐹 ⊆ (V × V))
87 df-rel 5407 . . . . 5 (Rel 𝐹𝐹 ⊆ (V × V))
8886, 87bitr4i 270 . . . 4 (𝐹 ∈ 𝒫 (V × V) ↔ Rel 𝐹)
8985elfix 32825 . . . . . 6 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ 𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹)
9085, 85coep 32447 . . . . . . 7 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝)
91 vex 3412 . . . . . . . . 9 𝑝 ∈ V
9285, 91coepr 32448 . . . . . . . 8 (𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9392rexbii 3188 . . . . . . 7 (∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9490, 93bitri 267 . . . . . 6 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
95 r2ex 3242 . . . . . 6 (∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝 ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9689, 94, 953bitri 289 . . . . 5 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9796notbii 312 . . . 4 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9888, 97anbi12i 617 . . 3 ((𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9983, 84, 983bitri 289 . 2 (𝐹 Funs ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
10080, 81, 993bitr4ri 296 1 (𝐹 Funs ↔ Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068  wal 1505   = wceq 1507  wex 1742  wcel 2048  wrex 3083  Vcvv 3409  cdif 3822  wss 3825  𝒫 cpw 4416  cop 4441   class class class wbr 4923   I cid 5304   E cep 5309   × cxp 5398  ccnv 5399  ccom 5404  Rel wrel 5405  Fun wfun 6176  1st c1st 7492  2nd c2nd 7493  ctxp 32752   Fix cfix 32757   Funs cfuns 32759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-eprel 5310  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-fo 6188  df-fv 6190  df-1st 7494  df-2nd 7495  df-txp 32776  df-fix 32781  df-funs 32783
This theorem is referenced by:  elfunsg  32838  dfrecs2  32872  dfrdg4  32873
  Copyright terms: Public domain W3C validator