Step | Hyp | Ref
| Expression |
1 | | ffun 6501 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
2 | | funimaexg 6421 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ∈ V) |
3 | 1, 2 | sylan 583 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ∈ V) |
4 | | abrexexg 7666 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∈ V) |
5 | 4 | adantl 485 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∈ V) |
6 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
7 | 6 | sneqd 4534 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → {(𝐹‘𝑦)} = {(𝐹‘𝑥)}) |
8 | 7 | imaeq2d 5901 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (◡𝐹 “ {(𝐹‘𝑦)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
9 | 8 | eqeq2d 2769 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑧 = (◡𝐹 “ {(𝐹‘𝑦)}) ↔ 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
10 | 9 | cbvrexvw 3362 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)}) ↔ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})) |
11 | 10 | abbii 2823 |
. . . 4
⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
12 | 11 | fundcmpsurbijinjpreimafv 44314 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
13 | | foeq3 6574 |
. . . . . . . . 9
⊢ (𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} → (𝑔:𝐴–onto→𝑝 ↔ 𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})})) |
14 | 13 | adantl 485 |
. . . . . . . 8
⊢ ((𝑞 = (𝐹 “ 𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}) → (𝑔:𝐴–onto→𝑝 ↔ 𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})})) |
15 | | f1oeq23 6593 |
. . . . . . . . 9
⊢ ((𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ 𝑞 = (𝐹 “ 𝐴)) → (ℎ:𝑝–1-1-onto→𝑞 ↔ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴))) |
16 | 15 | ancoms 462 |
. . . . . . . 8
⊢ ((𝑞 = (𝐹 “ 𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}) → (ℎ:𝑝–1-1-onto→𝑞 ↔ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴))) |
17 | | f1eq2 6556 |
. . . . . . . . 9
⊢ (𝑞 = (𝐹 “ 𝐴) → (𝑖:𝑞–1-1→𝐵 ↔ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵)) |
18 | 17 | adantr 484 |
. . . . . . . 8
⊢ ((𝑞 = (𝐹 “ 𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}) → (𝑖:𝑞–1-1→𝐵 ↔ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵)) |
19 | 14, 16, 18 | 3anbi123d 1433 |
. . . . . . 7
⊢ ((𝑞 = (𝐹 “ 𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}) → ((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ↔ (𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵))) |
20 | 19 | anbi1d 632 |
. . . . . 6
⊢ ((𝑞 = (𝐹 “ 𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}) → (((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) ↔ ((𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)))) |
21 | 20 | 3exbidv 1926 |
. . . . 5
⊢ ((𝑞 = (𝐹 “ 𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}) → (∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)))) |
22 | 21 | spc2egv 3518 |
. . . 4
⊢ (((𝐹 “ 𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∈ V) → (∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) → ∃𝑞∃𝑝∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)))) |
23 | 22 | imp 410 |
. . 3
⊢ ((((𝐹 “ 𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∈ V) ∧ ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} ∧ ℎ:{𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})}–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) → ∃𝑞∃𝑝∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
24 | 3, 5, 12, 23 | syl21anc 836 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑞∃𝑝∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
25 | | exrot4 2170 |
. . 3
⊢
(∃𝑞∃𝑝∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑞∃𝑝∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
26 | | excom13 2168 |
. . . 4
⊢
(∃𝑞∃𝑝∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) ↔ ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
27 | 26 | 2exbii 1850 |
. . 3
⊢
(∃𝑔∃ℎ∃𝑞∃𝑝∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
28 | 25, 27 | bitri 278 |
. 2
⊢
(∃𝑞∃𝑝∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |
29 | 24, 28 | sylib 221 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) |