Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurbijinj Structured version   Visualization version   GIF version

Theorem fundcmpsurbijinj 46673
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.)
Assertion
Ref Expression
fundcmpsurbijinj ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝   𝑔,𝑉   𝐴,𝑖,𝑞,𝑔,,𝑝   𝐵,𝑖,𝑞   𝑖,𝐹,𝑞
Allowed substitution hints:   𝑉(,𝑖,𝑞,𝑝)

Proof of Theorem fundcmpsurbijinj
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffun 6719 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
2 funimaexg 6633 . . . 4 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
31, 2sylan 579 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
4 abrexexg 7958 . . . 4 (𝐴𝑉 → {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V)
54adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V)
6 fveq2 6891 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
76sneqd 4636 . . . . . . . 8 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
87imaeq2d 6057 . . . . . . 7 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
98eqeq2d 2738 . . . . . 6 (𝑦 = 𝑥 → (𝑧 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑧 = (𝐹 “ {(𝐹𝑥)})))
109cbvrexvw 3230 . . . . 5 (∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)}))
1110abbii 2797 . . . 4 {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1211fundcmpsurbijinjpreimafv 46670 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
13 foeq3 6803 . . . . . . . . 9 (𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}))
1413adantl 481 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}))
15 f1oeq23 6824 . . . . . . . . 9 ((𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ 𝑞 = (𝐹𝐴)) → (:𝑝1-1-onto𝑞:{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴)))
1615ancoms 458 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (:𝑝1-1-onto𝑞:{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴)))
17 f1eq2 6783 . . . . . . . . 9 (𝑞 = (𝐹𝐴) → (𝑖:𝑞1-1𝐵𝑖:(𝐹𝐴)–1-1𝐵))
1817adantr 480 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (𝑖:𝑞1-1𝐵𝑖:(𝐹𝐴)–1-1𝐵))
1914, 16, 183anbi123d 1433 . . . . . . 7 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → ((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ↔ (𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵)))
2019anbi1d 629 . . . . . 6 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
21203exbidv 1921 . . . . 5 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (∃𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
2221spc2egv 3584 . . . 4 (((𝐹𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V) → (∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
2322imp 406 . . 3 ((((𝐹𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V) ∧ ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
243, 5, 12, 23syl21anc 837 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
25 exrot4 2159 . . 3 (∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
26 excom13 2157 . . . 4 (∃𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
27262exbii 1844 . . 3 (∃𝑔𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
2825, 27bitri 275 . 2 (∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
2924, 28sylib 217 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469  {csn 4624  ccnv 5671  cima 5675  ccom 5676  Fun wfun 6536  wf 6538  1-1wf1 6539  ontowfo 6540  1-1-ontowf1o 6541  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator