Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurbijinj Structured version   Visualization version   GIF version

Theorem fundcmpsurbijinj 47415
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.)
Assertion
Ref Expression
fundcmpsurbijinj ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝   𝑔,𝑉   𝐴,𝑖,𝑞,𝑔,,𝑝   𝐵,𝑖,𝑞   𝑖,𝐹,𝑞
Allowed substitution hints:   𝑉(,𝑖,𝑞,𝑝)

Proof of Theorem fundcmpsurbijinj
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffun 6694 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
2 funimaexg 6606 . . . 4 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
31, 2sylan 580 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
4 abrexexg 7942 . . . 4 (𝐴𝑉 → {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V)
54adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V)
6 fveq2 6861 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
76sneqd 4604 . . . . . . . 8 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
87imaeq2d 6034 . . . . . . 7 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
98eqeq2d 2741 . . . . . 6 (𝑦 = 𝑥 → (𝑧 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑧 = (𝐹 “ {(𝐹𝑥)})))
109cbvrexvw 3217 . . . . 5 (∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)}))
1110abbii 2797 . . . 4 {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1211fundcmpsurbijinjpreimafv 47412 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
13 foeq3 6773 . . . . . . . . 9 (𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}))
1413adantl 481 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}))
15 f1oeq23 6794 . . . . . . . . 9 ((𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ 𝑞 = (𝐹𝐴)) → (:𝑝1-1-onto𝑞:{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴)))
1615ancoms 458 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (:𝑝1-1-onto𝑞:{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴)))
17 f1eq2 6755 . . . . . . . . 9 (𝑞 = (𝐹𝐴) → (𝑖:𝑞1-1𝐵𝑖:(𝐹𝐴)–1-1𝐵))
1817adantr 480 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (𝑖:𝑞1-1𝐵𝑖:(𝐹𝐴)–1-1𝐵))
1914, 16, 183anbi123d 1438 . . . . . . 7 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → ((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ↔ (𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵)))
2019anbi1d 631 . . . . . 6 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
21203exbidv 1925 . . . . 5 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (∃𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
2221spc2egv 3568 . . . 4 (((𝐹𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V) → (∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
2322imp 406 . . 3 ((((𝐹𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V) ∧ ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
243, 5, 12, 23syl21anc 837 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
25 exrot4 2167 . . 3 (∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
26 excom13 2165 . . . 4 (∃𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
27262exbii 1849 . . 3 (∃𝑔𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
2825, 27bitri 275 . 2 (∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
2924, 28sylib 218 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  {csn 4592  ccnv 5640  cima 5644  ccom 5645  Fun wfun 6508  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator