Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurbijinj Structured version   Visualization version   GIF version

Theorem fundcmpsurbijinj 43619
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.)
Assertion
Ref Expression
fundcmpsurbijinj ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝   𝑔,𝑉   𝐴,𝑖,𝑞,𝑔,,𝑝   𝐵,𝑖,𝑞   𝑖,𝐹,𝑞
Allowed substitution hints:   𝑉(,𝑖,𝑞,𝑝)

Proof of Theorem fundcmpsurbijinj
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffun 6517 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
2 funimaexg 6440 . . . 4 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
31, 2sylan 582 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
4 abrexexg 7662 . . . 4 (𝐴𝑉 → {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V)
54adantl 484 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V)
6 fveq2 6670 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
76sneqd 4579 . . . . . . . 8 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
87imaeq2d 5929 . . . . . . 7 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
98eqeq2d 2832 . . . . . 6 (𝑦 = 𝑥 → (𝑧 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑧 = (𝐹 “ {(𝐹𝑥)})))
109cbvrexvw 3450 . . . . 5 (∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)}))
1110abbii 2886 . . . 4 {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1211fundcmpsurbijinjpreimafv 43616 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
13 foeq3 6588 . . . . . . . . 9 (𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}))
1413adantl 484 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}))
15 f1oeq23 6607 . . . . . . . . 9 ((𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ 𝑞 = (𝐹𝐴)) → (:𝑝1-1-onto𝑞:{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴)))
1615ancoms 461 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (:𝑝1-1-onto𝑞:{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴)))
17 f1eq2 6571 . . . . . . . . 9 (𝑞 = (𝐹𝐴) → (𝑖:𝑞1-1𝐵𝑖:(𝐹𝐴)–1-1𝐵))
1817adantr 483 . . . . . . . 8 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (𝑖:𝑞1-1𝐵𝑖:(𝐹𝐴)–1-1𝐵))
1914, 16, 183anbi123d 1432 . . . . . . 7 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → ((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ↔ (𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵)))
2019anbi1d 631 . . . . . 6 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
21203exbidv 1926 . . . . 5 ((𝑞 = (𝐹𝐴) ∧ 𝑝 = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}) → (∃𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
2221spc2egv 3600 . . . 4 (((𝐹𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V) → (∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))))
2322imp 409 . . 3 ((((𝐹𝐴) ∈ V ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∈ V) ∧ ∃𝑔𝑖((𝑔:𝐴onto→{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})} ∧ :{𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}–1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔))) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
243, 5, 12, 23syl21anc 835 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
25 exrot4 2173 . . 3 (∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
26 excom13 2171 . . . 4 (∃𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
27262exbii 1849 . . 3 (∃𝑔𝑞𝑝𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
2825, 27bitri 277 . 2 (∃𝑞𝑝𝑔𝑖((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)) ↔ ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
2924, 28sylib 220 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494  {csn 4567  ccnv 5554  cima 5558  ccom 5559  Fun wfun 6349  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator