MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exrot3 Structured version   Visualization version   GIF version

Theorem exrot3 2166
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exrot3 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)

Proof of Theorem exrot3
StepHypRef Expression
1 excom13 2165 . 2 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
2 excom 2163 . 2 (∃𝑧𝑦𝑥𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
31, 2bitri 275 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  opabn0  5572  dmoprab  7552  rnoprab  7554  xpassen  9132  cnvoprabOLD  32734  elima4  35739  brimg  35901  ellines  36116  rnxrn  38354  fundcmpsurinj  47283
  Copyright terms: Public domain W3C validator