Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exrot3 | Structured version Visualization version GIF version |
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
exrot3 | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 2166 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | |
2 | excom 2164 | . 2 ⊢ (∃𝑧∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-11 2156 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: opabn0 5459 dmoprab 7354 rnoprab 7356 xpassen 8806 cnvoprabOLD 30957 elima4 33656 brimg 34166 ellines 34381 rnxrn 36451 fundcmpsurinj 44749 |
Copyright terms: Public domain | W3C validator |