| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exrot3 | Structured version Visualization version GIF version | ||
| Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| exrot3 | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom13 2164 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | |
| 2 | excom 2162 | . 2 ⊢ (∃𝑧∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: opabn0 5528 dmoprab 7510 rnoprab 7512 xpassen 9080 elima4 35793 brimg 35955 ellines 36170 rnxrn 38416 fundcmpsurinj 47423 |
| Copyright terms: Public domain | W3C validator |