Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exrot3 | Structured version Visualization version GIF version |
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
exrot3 | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 2171 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | |
2 | excom 2169 | . 2 ⊢ (∃𝑧∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | |
3 | 1, 2 | bitri 278 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-11 2161 |
This theorem depends on definitions: df-bi 210 df-ex 1787 |
This theorem is referenced by: opabn0 5409 dmoprab 7270 rnoprab 7272 xpassen 8661 cnvoprabOLD 30630 elima4 33322 brimg 33877 ellines 34092 rnxrn 36144 fundcmpsurinj 44387 |
Copyright terms: Public domain | W3C validator |