MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excomim Structured version   Visualization version   GIF version

Theorem excomim 2166
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Remove dependencies on ax-5 1911, ax-6 1968, ax-7 2009, ax-10 2144, ax-12 2180. (Revised by Wolf Lammen, 8-Jan-2018.)
Assertion
Ref Expression
excomim (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)

Proof of Theorem excomim
StepHypRef Expression
1 excom 2165 . 2 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
21biimpi 216 1 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-11 2160
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  2euswapv  2625  2euswap  2640  relopabi  5762  lfuhgr3  35152  umgr2cycl  35173  ax6e2eq  44589  ax6e2nd  44590  ax6e2eqVD  44938  ax6e2ndVD  44939  ax6e2ndALT  44961
  Copyright terms: Public domain W3C validator