![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > excomim | Structured version Visualization version GIF version |
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Remove dependencies on ax-5 1905, ax-6 1963, ax-7 2003, ax-10 2129, ax-12 2166. (Revised by Wolf Lammen, 8-Jan-2018.) |
Ref | Expression |
---|---|
excomim | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 2151 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
2 | 1 | biimpi 215 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-11 2146 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: 2euswapv 2618 2euswap 2633 relopabi 5823 lfuhgr3 34799 umgr2cycl 34821 ax6e2eq 44061 ax6e2nd 44062 ax6e2eqVD 44411 ax6e2ndVD 44412 ax6e2ndALT 44434 |
Copyright terms: Public domain | W3C validator |