MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excomim Structured version   Visualization version   GIF version

Theorem excomim 2161
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Remove dependencies on ax-5 1908, ax-6 1965, ax-7 2005, ax-10 2139, ax-12 2175. (Revised by Wolf Lammen, 8-Jan-2018.)
Assertion
Ref Expression
excomim (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)

Proof of Theorem excomim
StepHypRef Expression
1 excom 2160 . 2 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
21biimpi 216 1 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-11 2155
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  2euswapv  2628  2euswap  2643  relopabi  5835  lfuhgr3  35104  umgr2cycl  35126  ax6e2eq  44555  ax6e2nd  44556  ax6e2eqVD  44905  ax6e2ndVD  44906  ax6e2ndALT  44928
  Copyright terms: Public domain W3C validator