MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excomim Structured version   Visualization version   GIF version

Theorem excomim 2165
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Remove dependencies on ax-5 1914, ax-6 1972, ax-7 2012, ax-10 2139, ax-12 2173. (Revised by Wolf Lammen, 8-Jan-2018.)
Assertion
Ref Expression
excomim (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)

Proof of Theorem excomim
StepHypRef Expression
1 excom 2164 . 2 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
21biimpi 215 1 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-11 2156
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  2euswapv  2632  2euswap  2647  relopabi  5721  lfuhgr3  32981  umgr2cycl  33003  ax6e2eq  42066  ax6e2nd  42067  ax6e2eqVD  42416  ax6e2ndVD  42417  ax6e2ndALT  42439
  Copyright terms: Public domain W3C validator