| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excomim | Structured version Visualization version GIF version | ||
| Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Remove dependencies on ax-5 1911, ax-6 1968, ax-7 2009, ax-10 2144, ax-12 2180. (Revised by Wolf Lammen, 8-Jan-2018.) |
| Ref | Expression |
|---|---|
| excomim | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 2165 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2euswapv 2625 2euswap 2640 relopabi 5762 lfuhgr3 35152 umgr2cycl 35173 ax6e2eq 44589 ax6e2nd 44590 ax6e2eqVD 44938 ax6e2ndVD 44939 ax6e2ndALT 44961 |
| Copyright terms: Public domain | W3C validator |