MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excomw Structured version   Visualization version   GIF version

Theorem excomw 2047
Description: Weak version of excom 2165 and biconditional form of excomimw 2045. Uses only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026.)
Hypotheses
Ref Expression
excomw.1 (𝑥 = 𝑤 → (𝜑𝜓))
excomw.2 (𝑦 = 𝑧 → (𝜑𝜒))
Assertion
Ref Expression
excomw (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑧   𝜑,𝑤   𝜓,𝑥   𝜒,𝑦   𝑥,𝑦   𝑦,𝑧   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧,𝑤)   𝜒(𝑥,𝑧,𝑤)

Proof of Theorem excomw
StepHypRef Expression
1 excomw.1 . . 3 (𝑥 = 𝑤 → (𝜑𝜓))
21excomimw 2045 . 2 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
3 excomw.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜒))
43excomimw 2045 . 2 (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑)
52, 4impbii 209 1 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  dm0rn0  5864  rnco  6199
  Copyright terms: Public domain W3C validator