| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excomw | Structured version Visualization version GIF version | ||
| Description: Weak version of excom 2165 and biconditional form of excomimw 2045. Uses only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026.) |
| Ref | Expression |
|---|---|
| excomw.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) |
| excomw.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| excomw | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomw.1 | . . 3 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | excomimw 2045 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| 3 | excomw.2 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 4 | 3 | excomimw 2045 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: dm0rn0 5864 rnco 6199 |
| Copyright terms: Public domain | W3C validator |