| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excomimw | Structured version Visualization version GIF version | ||
| Description: Weak version of excomim 2162. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 23-Jun-2025.) |
| Ref | Expression |
|---|---|
| excomimw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| excomimw | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomimw.1 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | alcomimw 2041 | . . 3 ⊢ (∀𝑦∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑) |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 → ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 5 | 2exnaln 1828 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 6 | 2exnaln 1828 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: dmcosseq 5967 dfac5lem4 10148 cflem 10267 |
| Copyright terms: Public domain | W3C validator |