MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excomimw Structured version   Visualization version   GIF version

Theorem excomimw 2043
Description: Weak version of excomim 2164. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 23-Jun-2025.)
Hypothesis
Ref Expression
excomimw.1 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
excomimw (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑧   𝜓,𝑥   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem excomimw
StepHypRef Expression
1 excomimw.1 . . . . 5 (𝑥 = 𝑧 → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = 𝑧 → (¬ 𝜑 ↔ ¬ 𝜓))
32alcomimw 2042 . . 3 (∀𝑦𝑥 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑)
43con3i 154 . 2 (¬ ∀𝑥𝑦 ¬ 𝜑 → ¬ ∀𝑦𝑥 ¬ 𝜑)
5 2exnaln 1827 . 2 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
6 2exnaln 1827 . 2 (∃𝑦𝑥𝜑 ↔ ¬ ∀𝑦𝑥 ¬ 𝜑)
74, 5, 63imtr4i 292 1 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  dmcosseq  6001  dfac5lem4  10197  cflem  10316
  Copyright terms: Public domain W3C validator